

DivIDE Plus

Hard Disk Expansion Interface
For the Sinclair ZX Spectrum

© Jarek Adamski & Jurek Dudek

for RWAP Software

USER MANUAL

Manual Update 7.1 (January 2011)
© RWAP Software
www.rwapsoftware.co.uk

DivIDE Plus User Manual

Page 2 of 140

Table of CONTENTS

NOTICE .. 6

IMPORTANT NOTE FOR SPECTRUM +2A, +2B AND +3 USERS 6

COMPATIBLE ADD-ONS ... 7

AVAILABLE FIRMWARE .. 7

INSTALLATION OF DIVIDE PLUS .. 9

Setting Up .. 10

USING A DISK DRIVE ... 10

Compatible Disk Drives .. 10

Jumper Settings ... 10

Use in 128K Mode ... 11

Installing Firmware .. 11

Loading the Disk Operating System .. 12

GETTING SOFTWARE ONTO COMPACT FLASH OR A HARD DISK 12

Running Problem Games .. 12

FATWARE FIRMWARE ... 13

INSTALLATION ... 14

Installing for the first time .. 14

Using FATWare... 14

RESIDOS FIRMWARE .. 15

INSTALLATION ... 16

Installing for the first time .. 16

Upgrading to a new version of ResiDOS .. 16

Installing Packages ... 16

SETTING UP YOUR HARD DISK OR COMPACTFLASH .. 18

IDEDOS or FAT? .. 18

Setting up a FAT drive .. 18

Setting up an IDEDOS drive ... 19

SWITCHING DISKS OR COMPACTFLASH CARDS ... 20

ENTERING RESIDOS COMMANDS .. 21

Entering functions ... 21

PARTITION MANAGEMENT ... 22

Creating, deleting and listing partitions ... 22

Automatic drive mappings ... 23

Mapping drives to partitions ... 23

DRIVES, DIRECTORIES, PATHS AND USER AREAS... 25

Setting the default drive, user area or path ... 25

Creating and deleting directories ... 26

Showing the current location .. 26

USING FILES IN RESIDOS ... 27

Filenames .. 27

Wildcards .. 27

DivIDE Plus User Manual

Page 3 of 140

LOADing and SAVEing files ... 28

Changing BASIC auto-run status .. 28

Cataloguing files ... 29

Deleting files ... 29

Copying files.. 29

Renaming files ... 30

Changing file attributes .. 30

128K RAMDISK EMULATION ... 30

Setting up the emulated RAMdisk ... 30

Using the emulated RAMdisk .. 31

CUSTOMISING RESIDOS .. 32

Custom colours.. 32

Autorun files .. 33

Processor speed .. 33

USING OPTIONAL PACKAGES, ALTERNATIVE BASICS AND INTERFACE 2 ROMS IN

RESIDOS ... 34

Installing ROMs .. 34

Installing ROMs from a file... 35

Installing ROMs already loaded into memory .. 35

Managing alternative ROMs ... 36

Using alternative ROMs .. 36

SPECTRUM MODES WITH RESIDOS ... 38

128K Mode .. 38

48K mode .. 38

Disabling ResiDOS ... 39

BREAK AND ERROR-TRAPPING ... 40

BREAK-trapping ... 40

Error-trapping... 40

Warning! ... 41

PACKAGES ... 42

THE RESIDOS TASK MANAGER .. 42

Overview ... 42

Managing Tasks .. 43

Other options ... 43

THE FATFS PACKAGE .. 44

TAPEIO PACKAGE – LOAD / SAVE .TAP AND .TZX FILES .. 45

The TapeIO Package ... 45

EXTENDED CHANNELS ... 49

Commands and functions for streams and channels ... 50

CHANNELS PACKAGE ... 51

RESIDOS COMMAND REFERENCE ... 58

Disk management commands .. 58

%DRIVE unit, cyl, head, sec .. 58

Partition management commands ... 59

Drive mapping commands ... 60

Drive, directory and path commands .. 60

File management commands ... 61

Customisation commands.. 63

ROM management commands ... 64

DivIDE Plus User Manual

Page 4 of 140

Spectrum mode commands .. 65

Error-trapping commands .. 65

Error-trapping functions ... 66

Channel commands ... 66

Channel functions.. 66

RESIDOS PROGRAMMING ... 67

Detecting ResiDOS .. 67

Detecting ResiDOS from BASIC ... 68

Package calls .. 68

The ResiDOS Package .. 70

The IDEDOS Package ... 89

+3DOS Calls ... 89

IDEDOS Calls ... 90

+DIVIDE FIRMWARE ... 93

NOTICE .. 94

INTRODUCTION .. 94

COMPATIBILITY ... 94

HOW TO ACCESS IDE DEVICES .. 95

THE CATALOGUE (OR FILE DIRECTORY) ... 96

+DivIDE File-Types .. 97

+DIVIDE DISK DRIVE COMMANDS.. 98

Saving a File and Verifying ... 98

Loading a Program ... 99

Breaking into a Program .. 99

Renaming a File .. 99

Merging a Program ... 100

Erasing a File .. 100

Creating an Autoload File .. 100

SNAPSHOT FILES .. 102

Problems? ... 103

ABBREVIATED SYNTAX .. 103

WILD-CARD FILES ... 104

FORMATTING NEW VIRTUAL DISKS ... 104

ERROR REPORTS .. 105

Nonsense in Basic ... 105

Format Data Lost .. 105

Sector Error .. 105

Disk Write Protected ... 105

File Not Found .. 105

ADVANCED DISK OPERATIONS .. 106

Sector by Sector Copying - Two Drives .. 106

Reading and Writing to a Sector ... 106

Using Streams and Channels .. 106

The Execute File .. 107

QUICK REFERENCE GUIDE ... 109

BASIC .. 109

READ DISK ... 109

LOAD FILES ... 109

DivIDE Plus User Manual

Page 5 of 140

SAVE FILES .. 109

DELETE FILES ... 109

FORMATTING DISKS .. 109

STREAMS .. 110

DIRECT SECTOR ACCESS .. 110

WILDCARDS ... 110

DEMFIR FIRMWARE ... 111

INTRODUCTION .. 112

STARTING UP DEMFIR ... 112

USING DEMFIR .. 112

The NMI Menu .. 112

The File Browser ... 114

The PokeManager ... 115

MDOS3 FIRMWARE ... 117

What is MDOS3? ... 118

Using MDOS3 ... 118

NMI Menu ... 118

MDOS3 Command Reference ... 122

MDOS3 PROGRAMMING ... 125

The MDOS3 Service Hook Codes ... 125

Table definitions: .. 135

PROGRAMMING FOR DIVIDE PLUS ... 137

Implementation of the 128K BASIC Mode on DivIDE Plus.. 137

Implementation of greater ROM/RAM space on DiviDE Plus 138

How the DivIDE Modes Operate .. 139

DivIDE Plus User Manual

Page 6 of 140

NOTICE

This manual, and the information contained herein, is copyright material and may not be

reproduced, transcribed, stored in a retrieval system, translated into any language or

computer language, or transmitted in any form whatsoever without the prior written

consent of RWAP Software.

The manual has been written specifically for users of the DivIDE Plus hard disk interface

for the Sinclair ZX Spectrum and contains various supplements for each type of firmware

which can be used with that interface.

The manual is intended to provide the user with detailed information adequate for the

efficient installation and operation of the equipment involved. However, while every effort

has been taken to ensure accuracy, the manufacturer assumes no liability resulting from

errors or omissions in this manual, or from the use of the information contained herein.

The manufacturer reserves the right both to change the specifications of the DivIDE Plus

and the firmware and to revise this publication from time to time without obligation to

notify any person of such revision or changes.

RWAP Software

April 2007

Important Note for

Spectrum +2A, +2B and +3 Users

Please note that the interface as shipped, needs a jumper added to work properly with the

Spectrum +2A, +2B and +3 computers. This jumper is located inside the interface, near

the Spectrum edge connector and needs to be closed for compatibility with these machines.

Please see Jumper Settings below.

In order to access the jumper, you will need to open the DivIDE Plus. The interface

enclosure is glued on the corners – the best means of opening the enclosure, is to us ean

isopropylic or ethylic alcohol, such as found in many video head cleaning sprays.

NOTE: This jumper should be left open (or missing) for use on the 16K and 48K original

Sinclair ZX Spectrum, the Spectrum + (both 48K and 128K toastrack models) and the

Spectrum +2.

DivIDE Plus User Manual

Page 7 of 140

Compatible Add-ons

The DivIDE Plus is unable to work with any Spectrum add-ons which have their own

external memory, or use the same I/O ports such as:

 Sinclair ZX Interface 1

 Sinclair ZX Interface 2 with a ROM cartridge inserted

 Sinclair ZX Printer

 RAM Turbo Interface with a ROM cartridge inserted

 MB02+

 PlusD Disk Interface (although we are working on this one)

 DISCIPLE interface

 ZXMMC+

 ZXCF

 Mutliface 1, 3 and 128

 D40 / D80

 INTERFACE M/P

The following interfaces have all been tested successfully. To ensure maximum chance of

success, plug these into the DivIDE Plus through connector, as not all pass the full range of

signals to their own through connector:

 Kempston Joystick Interfaces (and compatibles) - although some may not work if they

do not fully decode the port used to communicate with the ZX Spectrum

 RAM Turbo Interface (without a ROM cartridge inserted)

 Sinclair ZX Interface 2 (without a ROM cartridge inserted)

 Kempston Mouse Interface

 K-Mouse 2008 Inerface

 PS/2 PC Keyboard Interface

 UR/4

 Alphacom 32 Printer

Available Firmware

The functions provided by the DivIDE Plus depend on both the hardware and the firmware

which is contained on the built in flash EPROM. There are various types of firmware

available, all of which provide different functionality:

FATware 0.12

Written by Baze, this is one of the easiest to use firmwares, although it is read only at

present. It natively supports up to 8 standard FAT-16 partitions (including long file names),

which means you can format a CompactFlash card on your PC, insert it into the DivIDE

Plus and access any files on it.

DivIDE Plus User Manual

Page 8 of 140

FATware supports TAP, SNA, Z80, SCR and interlaced SCR files. To access the files,

press the Snapshot (NMI) button and navigate through the directory structure to find the

file you wish to load.

The battery backed memory on the DivIDE Plus allows FATware to remember the last

used file and also the position in the disk browser for when you turn on the Spectrum.

DEMFIR (DTP's Emulator Files Runner)

This is similar to FATware and handles the ISO 9660 file system found on CD-ROMs.

You can use either CDs or unfragmented ISO images stored on a disk.

DEMFIR supports TAP, SNA, Z80, MFC and SCR files, but as with FATware is currently

read only.

In order to use DEMFIR, you should put your CD into the CD-ROM drive and turn that on

and allow it to start up BEFORE you switch on the Spectrum. Once the drive is up and

running, turn on the Spectrum and then press the NMI button to start up DEMFIR. You

will see the DEMFIR version message (D0.7b) appear in green in the top right hand corner.

Press the ENTER key to browse the CD and find the files you need.

MDOS3

This is an enhanced version of the MDOS/MDOS2 systems which were used in D40/D80

disk units. MDOS3 is a full-featured OS which works with raw diskette images and

supports up to 4 virtual drives.

One of its DivIDE-specific add-ons is a tape emulator.

With a huge D40/D80 software base available this is worth a try, especially if you're a

former Didaktik user.

+DivIDE

Written by Rudy Biesma, this is an adaptation of the GDOS/G+DOS system found in the

DISCiPLE/+D disk interfaces. It should work with all DISCiPLE and +D software which

doesn't call routines in the G+DOS ROM directly.

+DivIDE uses virtual disks of 1600 sectors each on the ATA drive with some

enhancements to original GDOS/G+DOS features. NOTE: +DivIDE uses raw LBA access

to disk images so take care if you're hosting another file system on your disk.

ResiDOS

Written by Garry Lancaster, this uses the Spectrum +3e’s hard disk format (IDEDOS),

although it is possible to partition a hard disk (or compact flash card) between IDEDOS

and a windows FAT file system. Packages can also be installed into ResiDOS to provide

you with direct access to FAT-16 formatted disks and even a ZX80 and ZX81 emulator!

DivIDE Plus User Manual

Page 9 of 140

ResiDOS appears to require a 48K or 128K ZX Spectrum in order to work - we could not

get it to run on a 16K ZX Spectrum.

ResiDOS has a wide range of commands based on both +3DOS (the Spectrum +3’s file

system) and IDEDOS (the file system for the Spectrum +3e ROM). If you use the +3e

ROM, you are now able to access both the floppy disk drive on the Spectrum +3 and the

hard disk at the same time.

Installation of DivIDE Plus

The DivIDE Plus hard disk interface will work with all Sinclair ZX Spectrums and many

clones. There is a jumper on the Board (near the connector) which is required to be set to

allow you to use the interface with Spectrum +2A, +2B and +3 computers. DivIDE Plus

will even work from within the ZX Spectrum’s 128K BASIC mode, although this mode

can only be enabled from within software – see programming for DivIDE Plus at the end of

this manual.

A jumper on the board, near to the IDE / CF connector, is required to be set in order to

allow you to program the EPROM chip with a different firmware.

Support is restricted to IDE/ATA devices which support LBA mode. This means that

older hard disk drives are supported, together with Compact Flash memory (FlashIDE or

CF cards). You can however, use two drives or FlashIDE cards (a master and a slave) on

the same IDE cable.

SATA hard disk drives, CD and DVD drives are not supported.

In order to make the manual easier to understand, where a number is expected, you will see

(n) or similar – this is to distinguish from where the letter itself should be used. Letters are

not case sensitive, therefore for example:

LOAD d(n) can be LOAD D1 or LOAD d2

Where we refer to an IDE device this can be a hard disk, FlashIDE or Compact Flash

memory card connected to the DivIDE interface using an IDE cable or the Compact Flash

slot.

DivIDE Plus User Manual

Page 10 of 140

Setting Up

WARNING: Don't forget to turn off the power to your Spectrum before you connect or

disconnect any peripherals, including the DivIDE Plus Interface.

With the power off, carefully connect your DivIDE Plus Interface to the computer and your

IDE device to the DivIDE Plus. If you are using other peripherals, connect them to the

computer in their normal places. If you are using a peripheral which plugs into the

Spectrum's edge connector, you'll need to plug these into the through connector provided

on top of the DivIDE Plus.

Turn the Spectrum power on and the normal Spectrum introductory screen will appear on

your monitor/TV. The red indicator light on your DivIDE Plus will come on, indicating

that the electrical connection between the DivIDE Plus and the Spectrum has been

correctly made. Turn on the power to the disk drive and insert a blank disk.

If you are using the Spectrum 128K or + 2, go into the EDIT mode and then move the

cursor to select SCREEN. Then press ENTER. You must be in this screen mode to avoid

problems later.

USING A DISK DRIVE

Compatible Disk Drives

The DivIDE Plus interface will work with up to 2 devices at a time.

You can connect any IDE/ATA devices which support LBA mode and a Compact Flash

memory card up to 2GB. This means that older hard disk drives are supported, together

with Compact Flash memory (FlashIDE or CF cards). ResiDOS can support non-LBA

mode devices, but only if you use the IDEDOS format.

You can use two drives or FlashIDE cards (a master and a slave) on the same IDE cable, or

one drive on the IDE cable (which will be a master) and one compact flash memory card in

the CF Slot (which will be a slave if there is an IDE connected).

We may be able to provide suitable external disk drives or Compact Flash memory cards if

you do not have any.

Jumper Settings

The DivIDE Plus interface has three different jumpers which can be closed or open. A

closed jumper has a linkage block between the two pins – remove this to have the jumper

open.

There is one jumper inside the Interface case – this must be closed if you wish to use the

interface with a ZX Spectrum +2A, +2B or +3 computer. Please beware that the interface

unit is sealed with silicon – it can be prised open gently to break the seal.

DivIDE Plus User Manual

Page 11 of 140

The other two jumpers are found on the rear of the interface, near the IDE connector.

The jumper nearest the IDE connector must be closed if the Compact Flash slot is to be

used on its own (this makes the Compact Flash the master drive). Remove the linkage

block (set the jumper open) if you are using the IDE connector (the Compact Flash slot

becomes the slave drive and the IDE port the master).

The jumper next to this (furthest from the IDE connector) when closed protects the

onboard EPROM from being overwritten. This jumper must be open to install new

firmware.

Use in 128K Mode

If you wish to use the DivIDE Plus Interface from 128K Mode on the Spectrum 128K,

Spectrum +2, +2A, +2B or +3, then you will need to issue the following commands

(remember to close the jumper inside if you are using the interface with a ZX Spectrum

+2A, +2B or +3 computer):

OUT 32765,0

PRINT USR 0

You may need to reset the Spectrum after this command.

Installing Firmware

The DivIDE Plus comes shipped with all of the main firmwares installed.

To switch between each firmware at any time, you need to use the following BASIC

commands on your Spectrum:

OUT 23,x

PRINT USR 0

where x:

0 - FATware (without the optional Firmware Selector installed)

2 - DEMFIR

4 - +divIDE

6 – MDOS3

28 – FATware (with the optional Firmware Selector installed)

For ResiDOS, you will currently need to use the following commands:

POKE 18455,237:POKE 18456,65:POKE 18457,199

PRINT USR 18455

Control of the various firmwares and the options available on DivIDE Plus is made much

easier with the optional firmware selector software which provides a menu driven method

of choosing the firmware and selecting whether you want 48K or 128K mode. Even better,

DivIDE Plus User Manual

Page 12 of 140

the firmware selector will remember the settings for the next time you start up the

Spectrum !

Updating firmware onto the DivIDE Plus could not be easier. Download the special

flasher program plus the firmware from ourselves onto your PC and then use one of the

various utilities available from WorldofSpectrum.org (such as playtzx or an emulator) to

play this though the PC’s speakers into your Spectrum. You will need to use LOAD “” on

the ZX Spectrum and the program will then overwrite the installed firmware.

Loading the Disk Operating System

Connect the computer, the DivIDE Plus and the disk drive(s) and turn on the power. The

normal Spectrum title screen will appear, and the indicator lights on the DivIDE will come

on. The firmware will be loaded from the EPROM on the DivIDE interface with no

further action required.

GETTING SOFTWARE ONTO COMPACT FLASH OR A HARD DISK

Many people will find that the easiest way for them to get programs onto the ZX Spectrum

using the DivIDE Plus interface, is to use a PC to download .tap files from the internet and

copy them onto the compact flash card.

For playing the majority of games, this is ideal, and you can use FATware to select and

load the desired program. The only downside to this is if the program needs to write to the

compact flash memory, as FATware is read only.

Another option is to load software from cassette and then use either ResiDOS or +DivIDE

firmware to save it to the compact flash card / hard disk. A PC based management

program has been written by Scott Falk-Heuhn to enable you to manage and copy +DivIDE

images from compact flash onto your PC.

If you have software on +3 disk, if it is in BASIC, then you can easily copy software onto

the compact flash card using ResiDOS simply by disabling ResiDOS whilst you load the

software from disk, then re-enable ResiDOS to allow you to save it to the compact flash

card/hard disk. However, if you want the ability to use both the disk drive and the compact

flash card at the same time, you will need to upgrade the +3 to use +3e ROMs.

Running Problem Games

Some programs use a peculiar loading scheme which can cause them to fail to load from

compact flash card. You can get around the majority of these programs by entering the

command:
OUT 32765,48

before you use the LOAD "" command.

FATWare Firmware

for

ZX Spectrum DivIDE Plus Interface

© Baze

USER MANUAL

General DivIDE Version

Manual Update 1 (April 2007)

FATWare Firmware Supplement

Page 14 of 140

Installation

Installing for the first time

FATWare comes supplied on the DivIDE Plus – it is always there when you switch on

power to the ZX Spectrum. As soon as you turn on you should see the FATWare boot

screen appear!

FATWare will work with hard disks and also Compact Flash cards which contain at least

one FAT16 partition (the standard format for Compact Flash cards).

Please check to see that FATWare has recognised your IDE or Compact Flash card – if not,

you will need to press down the SPACE key whilst you turn on the power to your

Spectrum. This makes it initialise itself and read the details of attached devices.

Using FATWare

FATWare is probably the easiest firmware to start with – as soon as you press the Snapshot

(NMI) Button, you will see a disk navigator – this allows you to move back and forth

through the directories on all attached devices.

FATWare allows you to load files in the following formats:

.tap (this is a file which simulates a cassette tape)

.z80 (snapshot of the Spectrum's memory)

.sna (snapshot of the Spectrum's memory)

.scr (screen display)

Simply move the cursor using the cursor keys – press <ENTER> to go into a sub-directory

(or on .. to go back up a directory) until you find the file you want. Highlight the file, press

<ENTER> and the file will be loaded into memory !

If the file is a .TAP file, the NMI menu will only allow you to select the file and you are

then returned to BASIC. Simply enter LOAD “” to load the selected program.

We have also come across some instances where .z80 snapshot images (particularly those

created with the Task Manager from ResiDOS) will not load correctly under FATWare. If

this occurs, then the best way is to use the %SNAPLOAD "filename" command in ResiDOS.

That is all there is to it as currently FATWare is read only.

ResiDOS Firmware

for

ZX Spectrum DivIDE Plus Interface

© Garry Lancaster

USER MANUAL

Version released for RWAP Software DivIDE Plus Interface

Manual Update 1 (April 2007 – based on ResiDOS v2.25)

ResiDOS Firmware Supplement

Page 16 of 140

Installation

Installing for the first time

Installing ResiDOS is simple. First download the appropriate version of the installation

software for the DivIDE Plus interface from the downloads page

(http://www.worldofspectrum.org/residos/downloads.html) and load it into your Spectrum.

The software is provided in the form of an emulator TAP or TZX file, so you will need to

transfer it using software such as playtzx or an emulator. You'll find suitable software on

the World Of Spectrum site. Once it's transferred, just LOAD it into your Spectrum and

follow the simple on-screen instructions.

During installation, the program will confirm the size of your interface's RAM (usually

128K, 512K or 1024K).

Once you have changed the jumpers on your interface as instructed, the Spectrum will reset

and you should see the ResiDOS boot screen appear!

Upgrading to a new version of ResiDOS

When a new version of ResiDOS becomes available, installation is even easier. Just load

the installation program from tape as normal, and it will automatically detect your existing

version. You can then choose to upgrade, and the system will be automatically updated,

leaving all your installed ROMs and tasks still in the interface's memory.

If you choose to re-install, the normal installation procedure will occur. This will wipe all

the packages, ROMs and tasks from your interface's memory.

If you have the FATfs package installed, then instead of loading from tape you can simply

copy the installation files onto your FAT16 card, and LOAD them from there with

LOAD % “residos.bas”.

If you have the TapeIO package installed, you can copy the installer tape image

(residos.tzx) onto your card and then load it with %tapein "residos.tzx":LOAD ""

The latest version of ResiDOS (and its manual) is available on the ResiDOS homepage:

http://www.worldofspectrum.org/residos/

Installing Packages

One of the most useful functions of ResiDOS is the ability to install packages to add extra

functionality to ResiDOS.

These packages can be downloaded directly from the ResiDOS homepage:

http://www.worldofspectrum.org/residos/ and currently include both a ZX80 and a ZX81

http://www.worldofspectrum.org/residos/downloads.html
http://www.worldofspectrum.org/residos/
http://www.worldofspectrum.org/residos/

ResiDOS Firmware Supplement

Page 17 of 140

emulator, plus the ResiDOS Task Manager and also a package to provide the ability to

access FAT-16 formatted disks (in 8.3 format) directly using the ResiDOS commands.

ResiDOS Firmware Supplement

Page 18 of 140

Setting up your hard disk or CompactFlash

From v2.00, ResiDOS can work with cards and disks formatted to one of two different

filesystems:

IDEDOS, including +3DOS

FAT

The base installation of ResiDOS only supports IDEDOS drives, so in order to allow use of

FAT drives, you must install the optional FATfs package. In the future, other filesystems

may also become available.

You can use any combination of IDEDOS and FAT drives. If you have two drives or cards,

you can format one with IDEDOS and one with FAT. If you have only one card, you can

choose either system. It is also possible to divide a single card between IDEDOS and FAT;

see this page for details (although please note that it was written for the +3e, and so the

syntax of the commands is slightly different).

IDEDOS or FAT?

FAT has the following advantages:

- All PCs and Macs can read and write to FAT drives (as can digital cameras, PDAs etc),

so transferring files between your PC and Spectrum is extremely easy .

- Each partition can be up to 2GB in size (when FAT32 support is added, even this

limitation will be removed); IDEDOS partitions are limited to 16MB (although there is

no limit on the number of partitions).

- Files can be organized into directories

IDEDOS has the following advantages:

- IDEDOS drives can be directly used by the +3e

- IDEDOS drives can be used with the ZXVGS operating system

- CP/M, which may be ported to ResiDOS soon, needs IDEDOS drives

- Swap partitions, which could be used by games and other apps, are only currently

available on IDEDOS drives

Setting up a FAT drive

ResiDOS cannot directly format FAT drives. Instead, format your card or disk with your

PC. You need one or more FAT16 partitions. In Windows XP, this is done by selecting

"FAT" as the format type; do not select "FAT32", as the FATfs package does not support it

at the time of writing.

Then, after installing ResiDOS and the FATfs package, simply insert the card into your

interface and reset the Spectrum. It should be automatically detected and mapped to one or

more drive letters (shown on the startup screen).

ResiDOS Firmware Supplement

Page 19 of 140

Setting up an IDEDOS drive

Before you can use your hard disk or CompactFlash, it needs to be initialised with the

IDEDOS system. ResiDOS can work with two different physical drives, normally known

as the "master" and "slave" unit; in all the following commands, the first number given

identifies the unit number, which is 0 for the master and 1 for the slave.

The first thing to do is make sure that ResiDOS understands the structure of your disk.

Normally, it automatically detects this and displays the details on the boot screen.

However, if for some reason this doesn't work, you can manually specify the parameters

(shown on the drive itself, or to be found on the manufacturer's website) with the following

command:

%DRIVE 0,977,10,17

(The above command assumes your hard disk is the master drive (unit 0) and has 977

cylinders, 10 heads and 17 sectors). Once you have entered this command, the details are

permanently stored in your interface's RAM.

You can re-enable auto-detection for the master drive (unit 0) with the command:

%DRIVE 0

If you want to disable detection of a drive altogether, to save a bit of time on boot, you can

do so with the following example command, which disables detection of the slave drive

(unit 1):

%DRIVE 1,0,0,0

When you're sure that ResiDOS knows the correct details, you need to initialise the disk.

Note that doing this erases everything currently stored on the disk. The command to use is:

%REFORMAT 0,15

This initialises the master drive (unit 0), allowing up to 15 partitions to be created. You can

specify any number you like for the number of partitions, but note that the more you allow,

the slower certain partition management commands will be. Each partition can be up to

16Mb in size; I'd recommend calculating the number you would need to completely fill the

disk, and adding several more for a bit of elbow-room. So, a 1Gb disk could use about

1000/16=63 partitions, and you might wish to specify around 80.

From v1.92, it is possible to share a disk between ResiDOS and another filesystem (such as

FAT). To do this, you need to limit ResiDOS to using a limited number of cylinders on the

disk. The command to use is:

%REFORMAT 0,15,200

This formats the master drive as before, but only the first 200 cylinders will be used by

ResiDOS, leaving the rest available for other filesystems. For more information on how

this works, and how to create an effective shared disk, see the explanation on the +3e

website about sharing disks - http://www.worldofspectrum.org/zxplus3e/sharingdisks.html

ResiDOS Firmware Supplement

Page 20 of 140

Note, however, that the syntax of +3e commands differs from the ResiDOS syntax

described here.

Once the disk is initialised (you only ever need to do this once) you can use the partition

management commands to add some partitions for storing your files.

Switching disks or CompactFlash cards

To switch to using a different hard disk or CompactFlash card, you can use the following

command:

%DRIVES

This will unmap all existing drives and re-detect your disks/cards, automatically mapping

any drives back again as it would do on boot. Your BASIC program and all other data will

be unaffected by this process, so it's a very useful command for transferring files from one

CompactFlash card to another.

Note that once your disk is initialised, ResiDOS stores its details (about cylinders, heads,

sectors etc) on the disk itself, so when swapping disks or CompactFlash cards there is no

need to set these details again.

ResiDOS Firmware Supplement

Page 21 of 140

Entering ResiDOS Commands

ResiDOS commands are easy to enter under any version of BASIC, from the standard

keyword-driven 48K BASIC to the more recent versions such as SE BASIC and Gosh

Wonderful, which allow commands to be entered letter-by-letter.

For all commands, the % characters shown on this website are completely optional. They're

only required if the command would otherwise be accepted by BASIC (eg, in most

BASICs, LOAD "name" would load a program from tape, so you need to use LOAD %"name"

to load a program from disk or compactflash). For BASICs which use keyword entry (eg

standard 48K BASIC), it's also usually convenient to start commands which don't have a

keyword with %, simply to take the Spectrum out of K mode and into L mode. On single-

character-entry BASICs like SE BASIC or Gosh Wonderful there's no need to bother with

the leading %.

Additionally, commands which are not present as Spectrum keywords (such as LOAD and

SAVE) may be entered as upper or lower-case (or a mixture), although they are always

shown in capitals on this site. If you are using a single-character-entry BASIC, then they

will usually accept keywords in lower-case as well.

Finally, commands can be abbreviated, to save you from having to type in the entire

command name. This is done by adding a "." character to the partial command name.

ResiDOS will make a guess at the command desired and fill it in for you.

As an example of the flexibility of the system, here are a number of ways to enter the same

command (which lists the partitions on your disk):

%PARTITIONS

PARTITIONS

partitions

%Partitions

%PAR.

p.

Entering functions

From v1.81, ResiDOS contains its own built-in functions, that can be used as parts of

expressions in the same way as other functions. They are entered as if they were user-

defined functions, as the FN keyword followed by the function name and a list of

parameters in brackets. Optionally, you can use a % sign between FN and the function name.

A couple of examples of using ResiDOS functions in expressions are:

GOTO FN ERL()+1

PRINT 100*FN %ERR()

ResiDOS Firmware Supplement

Page 22 of 140

Partition Management

Note that some of this section is concerned with creating and managing partitions on

IDEDOS drives, so if you are using FAT drives (with the optional FATfs package), then

much of it does not apply. However, it is still possible to list partitions on FAT drives with

the %PARTITIONS command. You should also read the section on mapping partitions to

drives, at the end of this page.

The IDEDOS system used by ResiDOS allows you to divide your hard disk up into many

separate partitions, which can each be assigned to a drive letter and used for storing files.

You can have as many partitions as you like on your disk, but due to memory constraints it

may not be possible to map them all at one time.

Partitions can be one of two types: "data", for holding files; and "swap", for use as

temporary workspace by programs or the operating system. Other types may be added in

the future. Note that no programs currently require swap partitions, but there is no harm in

creating one for future use.

Commands exist to allow you to create and delete partitions and assign them to drive

letters. Unlike some inferior operating systems, this can all be done from BASIC, and there

is no need to reset your Speccy at any point!

Creating, deleting and listing partitions

You can create a partition using one of the following commands, which create data and

swap partitions respectively:

%PARTITION "name",size

%PARTITION "name",size, 2

To identify which unit a partition is to be created on, the number can be included at the

start of the name, followed by the unit number (eg "0>Documents" or "1>Games"). If you

don't specify the unit, then unit 0 is assumed. Names can be up to 16 characters long (this

doesn't include the unit identifier) and are not case-sensitive.

The size for a partition can be given in kilobytes (K) or megabytes (MB), with a maximum

size of 16 megabytes allowed. A number smaller than 256 is assumed to be a size in

megabytes; a number larger or equal to 256 is assumed to be a size in kilobytes.

You can delete a partition, together with any files that are stored on it, using the command:

%ERASE "unit>name"

In this command, you must specify the unit number, as otherwise it will be assumed you

are trying to erase a file. You can use ERA or DEL instead of ERASE if you prefer. Note that a

partition can only be deleted if there are currently no drives mapped to it.

You may also rename a partition, using the following command:

%REN "unit>name","newname"

ResiDOS Firmware Supplement

Page 23 of 140

Again, you must include the unit identifier for this command, otherwise it will assume you

want to rename a file, not a partition.

Finally, you may display a list of partitions, in a normal or expanded form, using the

following commands:

%PARTITIONS

%PARTITIONS+

This will show all partitions on all units. Note that if you have other filesystem packages

installed (such as FATfs) then some cards/disks will show up more than once, with

different unit numbers.

Automatic drive mappings

Normally, when the Spectrum starts up, ResiDOS automatically maps all the data partitions

it finds to all the available drive letters. If you don't like this behaviour, you can manually

specify your own drive mappings. You can also turn off the automatic mapping feature

with the command:

%AUTOMAP-

The feature can be re-enabled at a later time with the command:

%AUTOMAP+

Mapping drives to partitions

It is also possible to manually map drives to partitions, so that you can choose which drive

letters a particular partition uses.

When mapping a drive to a partition, you can make the assignment permanent, which

means that ResiDOS will automatically make the same assignment every time the

Spectrum starts up. This is done by adding the + character to the end of the mapping

command. Such permanent mappings happen before the automatic mapping takes place, so

you can permanently map your favourite drives and let automatic mapping take care of the

remainder.

The commands to map drives to partitions are:

%MAP "drive:","name"

%MAP+ "drive:","name"

Similar commands are available to remove mappings from drives. Using the + character

here means that any permanent assignment associated with the drive will also be removed:

%UNMAP "drive:"

%UNMAP+ "drive:"

ResiDOS Firmware Supplement

Page 24 of 140

Finally, you can obtain a listing of the current drive mappings with the following

command, in which you can optionally specify a stream number for the output (ie stream 3

is often used for the printer):

%MAP

%MAP #3

ResiDOS Firmware Supplement

Page 25 of 140

Drives, directories, paths and user areas

The location of a file is determined by one or more of the following pieces of information:

- drive (a letter from A-P)

- user area (a number from 0-15)

- path (a list of directories, separated with the / or \ character)

Drives are available for all filesystems. User areas are only supported by IDEDOS drives.

Directories and paths are only supported by FAT drives.

You can specify any, all or none of the pieces of information above when naming a file.

Any missing information is provided by the current default drive, user area or path, which

can be changed using the %CD command (see below). When specifying locations, the user

area must come first, followed by the drive, followed by a colon (:), followed by the path.

For example, the following are all valid locations:

A:

2:

\

0e:

../

docs/letters/

f:\zcode\infocom\zork

Locations can be included with filenames in any command that uses them (eg SAVE, LOAD,

%CP; see the following section on using files in ResiDOS for more information).

Setting the default drive, user area or path

You can set the drive which is used by default to any you like; if you don't use this facility,

then ResiDOS will use A: as the default drive, and 0 as the default user area. To set the

default drive, user area or path, use the commands:

%CD "c:"

%CD "3:"

%CD "5d:"

%CD "games/"

%CD "e:\data\new"

If you wish, you can make your preference permanent by adding the + character to the end

of the command. For example, to make E: the default drive, and have ResiDOS remember

this preference every time you switch on, use:

%CD+ "E:"

ResiDOS Firmware Supplement

Page 26 of 140

To make a path permanent, you must specify the drive to which it applies. Each drive has

its own default path, so you can set permanent paths for multiple different drives. For

example:

%CD+ "A:games/"

%CD+ "e:\data\new"

Creating and deleting directories

You can create directories with the %MD (or %MKDIR) command:

%MD "advents"

%MKDIR "c:\advents\level9"

You can delete directories with the %RD (or %RMDIR) command. They must be empty before

they can be removed:

%RD "games"

%RMDIR "/data/test"

Showing the current location

One final command that is available is %PWD, which simply prints the current working

directory (ie the current user area, drive and path):

%PWD

ResiDOS Firmware Supplement

Page 27 of 140

Using files in ResiDOS

Filenames

Filenames consist of an 8-character name, optionally followed by a full stop (.) and an

extension of up to 3 characters. The characters allowed are:

 letters A to Z (upper- or lower-case; there is no distinction)

 numbers 0 to 9

 the following characters: " # $ ' @ ^ _ { } ~ `

Although extensions are not needed by BASIC or ResiDOS, you may find it helpful to

name files in a consistent way, so that all BASIC programs have an extension of .BAS, for

example.

As well as the filename itself, you can specify a drive letter followed by a colon (:) to

identify which drive the file is stored on (A: to P:); if this is not done, then the default drive

will be assumed (this is drive A: unless you change it).

Finally, you can also specify a user area number just before the drive (if you don't, then the

default user area - usually 0 - is assumed). The user area can be between 0 and 15. This

facility allows you a sort of primitive directory system on each drive. See the section on

setting the default drive, user area and path above.

Some example filenames are:

prog

TEST.BAS

c:puzzle

5e:screen.scr

test21.z__

Wildcards

Some commands can have wildcards provided in their filenames. These are used to match

multiple files. The following wildcard characters are allowed:

* matches any sequence of characters

? matches any single character

Wildcard characters can be used in either the name or extension part of the filename. Some

examples are:

.

*.bas

c:test.b??

ResiDOS Firmware Supplement

Page 28 of 140

LOADing and SAVEing files

You can load and save files to and from the hard disk or CompactFlash card using the

standard LOAD and SAVE syntax, but adding a % sign after the command name. For example:

SAVE %"hello.bas" LINE 10

LOAD %"piccy" SCREEN$

Note that DATA files are not currently supported, although BASIC programs, CODE files and

SCREEN$ are.

If you attempt to SAVE a file when one already exists with the same name, the existing file

will be renamed by changing its extension to .BAK, before the new file is saved. If there

was an existing .BAK file of the same name, it will be automatically deleted.

You can also LOAD any type of file that was not created by the Spectrum (standard PC text

files, for example), using LOAD %"name" CODE. If you do not specify a start address, then

32768 will be used as the default. Such files can alternatively be LOADed using the SCREEN$

keyword, although this obviously only really makes sense if they are Spectrum screen

dumps.

Additionally, snapshot files in the standard .SNA or .Z80 file formats (including those

saved by the Task Manager, which are in .Z80 format) can be reloaded using the

command:

%SNAPLOAD "snapname"

This command can load 48K and 128K snapshots, although you will get an "out of

memory" error if you try to load a 128K snapshot when in 48K mode. Note also that the

command decides which format the snapshot is in from the file extension, so be sure to

name your snapshots with the appropriate extension (.Z80 or .SNA).

To aid compatiblity with certain snapshots, there are two additional options with this

command. Use "+" to make the snapshot loader use a small amount of screen memory

(normally it uses the stack area, which is okay in most cases). Use "-" to run the snapshot

using the Spectrum's built-in ROM rather than the patched one used with ResiDOS. Either

or both of these options may be used, eg:

%SNAPLOAD+ "snapname"

%SNAPLOAD- "snapname"

%SNAPLOAD+- "snapname"

Changing BASIC auto-run status

It is not possible to MERGE files in ResiDOS, but you can change whether or not a BASIC

program auto-runs, using the LINE command:

LINE %"filename",line

If you specify a line number of 0, then the BASIC program will no longer auto-run.

ResiDOS Firmware Supplement

Page 29 of 140

Cataloguing files

To show a list of all files on the current drive in the current user area, use one of the

following:

%CAT

%DIR

You can also specify a string containing a drive, path and/or user area, to see files in that

particular location (otherwise the defaults are assumed). The string can also contain a

filename or wildcards, and will display only those files which match the string.

Additionally, you can add the + character at the end of the command to show all files

(including system files, which are normally hidden) together with the attributes for each

file. Some additional information is also given for BASIC and CODE files saved by

ResiDOS.

Finally, you can specify a stream number, so that you can (for example) print the catalog

listing. (This also applies to all other commands in ResiDOS which just produce a listing of

information).

Some examples are:

%CAT "d:games\"

%DIR "15C:"

%CAT "*.bas"

%CAT+ "e:test.*"

%DIR+ #3;"c:"

Deleting files

To erase files from the hard disk, use one of the following commands:

%ERASE "filename"

%ERA "filename"

%DEL "filename"

You can use wildcards in order to erase many files at the same time, but be careful if using

this facility!

Copying files

You can make a copy of file to a new file with a different name, or copy one or more files

(using wildcards) to a different drive, user area or directory. If you specify "" as the

destination, then the current location is used. Some examples are:

%CP "letter.doc","letter2.doc"

%CP "*.rom","b:"

%CP "0c:*.*","3c:"

ResiDOS Firmware Supplement

Page 30 of 140

%CP "manic.sna","e:"

%CP "/snaps/sinclair/c/*.z80",""

Renaming files

To rename a file, use:

%REN "filename","newname"

This must be a single file (you cannot use wildcards). It is possible to use this command to

change the user area for a file (but not the drive), simply by specifying the same name with

a different user area.

Changing file attributes

You can add or remove various file attributes from a file (or group of files, using

wildcards). The possible attributes are:

 P (protected, or read-only)

 S (system, or hidden)

 A (archive - doesn't have any real use)

Protected files cannot be erased or changed, and system files cannot be copied and are not

normally listed in catalogs (only in expanded catalogs). You can add or remove a single

attribute at a time, by using a "+" or "-" character, as in the following examples:

%ATTRIB "*.*","+p"

%ATTRIB "*.sys","+s"

%ATTRIB "letter.doc","-p"

128K RAMdisk emulation

128K Spectrum BASIC includes a number of commands for saving files to the extra

memory as a RAMdisk. ResiDOS includes emulation of these RAMdisk commands, which

work in both 128K and 48K modes.

Setting up the emulated RAMdisk

ResiDOS always uses user area 15 of drive M: to hold RAMdisk files (it uses the hard disk

or compactflash card rather than memory, and so can store a lot more files than the 62K or

so that the 128K Spectrum can manage). In order to use the RAMdisk commands,

therefore, you must first map drive M: to a suitable partition. Here's one suggested way to

ensure you always have a 500K RAMdisk available whenever you start the Speccy:

%PARTITION "RAMdisk",500

%MAP+ "M:","RAMdisk"

Alternatively, if you want to share a partition that you already use (this is quite safe, as the

RAMdisk always uses user area 15, whereas the normal default user area is 0), remap it to

ResiDOS Firmware Supplement

Page 31 of 140

drive M: as follows. If this is the drive you want to use by default for normal file

operations (on user area 0, for example), you can also do that as shown.

%MAP+ "M:","name"

%CD+ "0M:"

If you are map drive M: to a partition on a FAT disk (using the optional FATfs package),

then you should be slightly more careful. Since FAT filesystems don't support user areas,

using the RAMdisk will affect all files in the current directory of the drive; there is no user

area protection, as with IDEDOS partitions. So be careful if you decide to do something

drastic like ERASE !"*.*".

Using the emulated RAMdisk

Once it has been set up, you can use all the standard 128K BASIC commands that access

the RAMdisk. The only limitations are that you cannot currently load or save DATA files,

or perform MERGE operations, as these facilities are not yet available in ResiDOS.

Some example commands are:

CAT !

LOAD !"name"

SAVE !"name" LINE 10

LOAD !"name" SCREEN$

ResiDOS Firmware Supplement

Page 32 of 140

Customising ResiDOS

As well as being able to configure ResiDOS to automatically set up drive mappings and

default drives when you boot up, you can customise it in other ways.

All "permanent" settings are held in a special system file called residos.cfg which is saved

on the first available partition of your system. This is a text-based configuration file, so if

you wish you can edit it on your PC/Mac, as well as using the normal ResiDOS commands.

If you switch cards, then a new config file will be created on the new card. This allows you

to keep different settings for different cards (for example, the AUTORUN file will

probably need to be different). If you prefer to keep the same settings, you can simply copy

the residos.cfg file across from one card to the other.

You can stop the permanent settings (and automapping) from happening if you hold down

the CAPS SHIFT key whilst booting the Spectrum. You can also delete all permanent

settings in one go by deleting the residos.cfg file.

Custom colours

You can choose custom colours which will be set every time the Spectrum starts up, rather

than the usual boring old black on white. To do this, use the normal colour commands, but

followed by "%". By using the percentage sign you specify that the current colour scheme

(including the new colour you are just setting) will be used whenever you boot.

Additionally, you can use the new ATTR command to specify all colours together (this is

calculated as ink+(paper*8)+(bright*64)+(flash*128)). The commands are:

INK % n

PAPER % n

BRIGHT % n

FLASH % n

ATTR % n

Note that because the % sets all the current scheme as default, the following examples have

the same effect, and set a default colour scheme of yellow ink on blue paper:

INK % 6:PAPER % 1

INK 6:PAPER % 1

ResiDOS Firmware Supplement

Page 33 of 140

Autorun files

You can also set an "autorun" file. This must be a BASIC program (which can do whatever

you like) which will run automatically on boot, or just whenever you enter the special

%AUTORUN command.

To set an autorun file, use one of the following commands:

%AUTORUN "filename"

%AUTORUN+ "filename"

You may specify a drive and/or user area with the filename (otherwise the defaults will be

assumed). These two commands differ, because with the second case, the autorun file will

automatically be loaded every time you reset (or NEW) your Spectrum. The first command

stores the filename, but will not load it unless you enter the following command:

%AUTORUN

Note that you can hold the CAPS SHIFT key down when booting to stop drives from being

automatically mapped, so any autorun file will not be able to be loaded.

You can disable the autorun file with the following command:

%AUTORUN-

Processor speed

Some systems (only ZX-Badaloc, at the time of writing) allow the Z80 processor speed to

be increased above the standard 3.54MHz. The following commands can be used to select

the system speed:

%SPEED n

%SPEED+ n

%SPEED- n

Each command sets the current speed to n (discussed below). If the "+" option is used, then

the speed is made permanent and takes effect every time the Spectrum starts up. If the "-"

option is used, then any permanent speed setting is removed, and the Spectrum reverts to

the default system speed every time it starts up.

The value of n depends on the system. For ZX-Badaloc it is as follows:

0 - 3.54MHz

1 - 7MHz

2 - 14MHz

3 - 21MHz

4 - 7.08 MHz, 100Hz interrupts, 100Hz VGA

5 - 14.16 MHz, 100Hz interrupts, 100Hz VGA

6 - 28.32 MHz, 100Hz interrupts, 100Hz VGA

7 - 42.50 MHz, 100Hz interrupts, 100Hz VGA (not recommended at time of writing)

This command may be executed on all ResiDOS systems, although it will have no effect on

anything except ZX-Badaloc.

ResiDOS Firmware Supplement

Page 34 of 140

Using optional packages, alternative BASICs and

Interface 2 ROMs in ResiDOS

The RAM in your interface can be used to store alternative versions of BASIC, or Interface

2 ROM images. Once they have been added, you can start them up at any time using a

simple command.

Additionally, ResiDOS can be enhanced by loading optional packages which provide

additional features such as new commands and access to other types of filesystems, such as

the common FAT-16 type used on PCs. The latest packages can be downloaded directly

from the ResiDOS homepage: http://www.worldofspectrum.org/residos/

Installing ROMs

You can install ROMs in one of two ways:

- directly from a file stored on your hard disk or card, or

- by first loading the ROM into memory (from tape or hard disk)

Suitable ROMs for installation include ResiDOS specific packages, alternative BASICs

(such as Gosh Wonderful, SE BASIC or Sea Change) or Interface 2 ROMs (such as those

originally released by Sinclair, or unreleased prototypes from Parker which have recently

come to light).

http://www.worldofspectrum.org/residos/

ResiDOS Firmware Supplement

Page 35 of 140

Installing ROMs from a file

If you have copied a ROM to disk or card, then install it with the following commands:

CLEAR 32767

%INSTALL "filename",n

The first command reserves space for the installation process, and the second performs the

installation. The name of the ROM kept by ResiDOS will be the filename (excluding any

extension after a "."). The number, n, should be any of the following values, added together

as appropriate:

0: for a package, or an Interface 2 ROM (or any other ROM that does not require

ResiDOS support)

1: for a BASIC ROM

16: to install the ROM into the writeable "RAM" part of the interface memory (the non-

writeable "ROM" part is used by default)

32: to disable the NMI button for this ROM (only affects BASIC ROMs)

If you don't specify a value, then the default of 0 will be used. If you are installing a

package, then any value except 0 will be ignored, since packages include their own

information telling ResiDOS how they should be installed.

Note that it is generally advisable to only store BASIC ROMs into the non-writeable

"ROM" part of the memory, since unless they have been specifically patched they tend to

overwrite themselves. However, if you are running short of ROM space on a ZXATASP or

DivIDE Plus interface, you may specify RAM instead. This is not a concern on other

interfaces, since the memory can be configured automatically by ResiDOS to be ROM or

RAM as required.

A couple of examples are:

CLEAR 32767

%INSTALL "SEBASIC.ROM",1

%INSTALL "c:jetpac.rom",0

%INSTALL "FATfs.pkg"

Installing ROMs already loaded into memory

An alternative installation method is to load the ROM image into memory, and then install

it directly from there. Since this allows you to load from tape, it is handy for installing

packages like FATfs when you don't have access to the disk.

ResiDOS Firmware Supplement

Page 36 of 140

To use this method, first CLEAR to a suitable address, and then load in the ROM to above

this address. For example:

CLEAR 39999

LOAD "FATfs" CODE 40000

Then the ROM can be installed by using the following form of the %INSTALL command:

%INSTALL "name"@address,n

As before, the "n" value is optional.

To install the package just loaded in the previous example, use:

%INSTALL "FATfs"@40000

Managing alternative ROMs

You can see a list of all the installed ROMs in your interface by using the following

commands (the second version includes hidden ROMs, used by the system but not

selectable by the user):

%ROMS

%ROMS+

The names of the ROMs (except built-in system ones) will be the same as the filename

used when loading them, except that any extension is ignored. For example, the ROMs

loaded in the previous section would be named "SEBASIC" and "jetpac".

You can uninstall any ROM using the following command (this only removes it from the

interface memory, not from the hard disk):

%UNINSTALL "name"

Using alternative ROMs

Once you have installed some formats as described in the previous section, they are

available for instant use whenever you switch on the Spectrum. To activate a particular

format, use the command:

%ROM "name"

For example, having installed the ROMs in the previous section, we could use either of

them like this:

%ROM "SEBASIC"

%ROM "jetpac"

If you specify an Interface II ROM, it will immediately start. Pressing the reset button will

reset the ROM. To return to ResiDOS you will need to either reset your interface and the

Spectrum together, or switch off the power completely and then switch the system back on.

ResiDOS Firmware Supplement

Page 37 of 140

If you are activating a BASIC ROM, the Spectrum will restart using that BASIC. You can

then use ResiDOS commands as normal, and the additional features of the particular

BASIC you have chosen.

The new BASIC will remain as the default one even if you switch off the Spectrum and

turn back on again. To return to the original BASIC, you can simply select the "Standard"

ROM (which is automatically created as part of the installation process), for example:

%ROM "Standard"

Alternatively, hold down the CAPS SHIFT key while the Speccy is booting up, and the

standard ROM will be automatically re-selected.

One final feature is the ability to switch off the interface memory altogether and use your

Spectrum's built-in ROM, without having to unplug the interface or set the upload or

disable jumper (this is useful for 128K Spectrums and +3s). To do this, use the command:

%ZX

ResiDOS Firmware Supplement

Page 38 of 140

Spectrum Modes with ResiDOS

ResiDOS can operate in a number of different modes, depending upon the configuration of

your Spectrum. The two basic modes of operation are:

128K mode

48K mode

When ResiDOS starts up, it displays the current mode on the title screen. If you have a 48K

Spectrum, then 48K mode is the only possibility. For 128K Spectrums, ResiDOS will

usually start up in 128K mode.

128K Mode

In ResiDOS, 128K mode behaves in the same way as what is often referred to as USR 0

mode; this mode is usually required by demos, and modern programs from Russia and

other countries. (Normally, 128K Spectrums enter this mode by typing USR 0 in 128K

BASIC).

This mode gives access to all the special hardware of the 128K machines (the sound and

extra memory), but without access to the 128K BASIC editor and commands. Under

ResiDOS, the 128K RAMdisk commands and SPECTRUM command are also available

(in fact, they also work in 48K mode).

This mode is recommended for loading 128K programs. Some 128K programs will not

load in this mode (since they check to see if 128K BASIC is active). In such cases, you

must disable ResiDOS and restart into 128K BASIC with the %ZX command.

If you wish to use the single key 128K BASIC editor, you will need to install either SE

BASIC or Gosh Wonderful BASIC from within ResiDOS - see the section on installing

ROMs above.

IMPORTANT NOTE: The current version of the Task Manager does not understand that

some tasks might run in 128K mode and use the whole 128K of memory, and will not save

128K snapshots. It is possible to have a single task loaded which uses the extra memory of

the 128K Spectrum, and switch between that and other tasks. However, if two 128K

programs are loaded, there will be problems. This will be addressed in a future version.

48K mode

Some games will not work correctly in 128K mode. For these you can use the SPECTRUM

command to force the computer into 48K mode until the next reset.

If you always want to work in this mode, the command SPECTRUM+ will make 48K mode

active every time the computer is switched on. To disable this mode, and re-enter 128K

mode on the next reset, use the SPECTRUM- command.

ResiDOS Firmware Supplement

Page 39 of 140

Disabling ResiDOS

It is possible to temporarily disable ResiDOS and then re-enable it, whilst leaving any

program in memory unchanged. This can be useful if you have some piece of hardware

which is incompatible with ResiDOS, such as Microdrives, or a Wafadrive etc. It is also

useful for switching from the %ZX mode's 128K BASIC back into ResiDOS without

having to switch off.

On the Sinclair ZX Spectrum +3 machine, this can be very useful in order to allow you to

disable ResiDOS temporarily, to load a program from a +3 disk - once it loads, you can re-

enable ResiDOS and then save the program to compact flash card.

The commands to do this are:

DivIDE Plus

Disable ResiDOS: OUT 23,0 or use: %ZX

Re-enable ResiDOS: OUT 23,104

ResiDOS Firmware Supplement

Page 40 of 140

BREAK and error-trapping

ResiDOS contains facilities to detect BREAK and error conditions, and have them handled

by your own BASIC program, instead of simply having an error message produced. This

allows you to write more professional-looking BASIC programs, which can't be broken in

to, and which can cope with expected errors (such as being unable to find a file requested

by the user, for example).

You are advised to SAVE your work before running any program with error-trapping

facilities, as if you have made a mistake somewhere, much trouble can ensue!

BREAK-trapping

You can prevent the user from BREAKing into your program with the %ONBREAK

command. This has two forms; to stop BREAK from being effective, use:

%ONBREAK THEN CONTINUE

The THEN keyword is optional, and used to make entering the CONTINUE keyword easier on

normal keyword-driven BASICs. On single-letter-entry BASICs, there is no need to use it.

To restore the normal operation of BREAK, use:

%ONBREAK OFF

(You could include the THEN keyword again, but it would be more trouble than it's worth to

enter it).

Note that BREAK-trapping prevents the user from stopping the program in any of the

following ways:

 pressing CAPS SHIFT + BREAK

 pressing SPACE or "n" at a "scroll?" prompt

 entering STOP in an INPUT statement

It does not prevent the user from BREAK-ing in by pressing CAPS SHIFT + 6 in an INPUT

LINE statement, so you are advised to use a straightforward INPUT instead.

Error-trapping

All other errors (except for "OK", "Program finished" and "STOP statement") can be

trapped using the %ONERR command. This takes any of the following forms, allowing you

to transfer control to an error routine, or just call a subroutine before continuing with the

program after the point where the error occurred:

%ONERR THEN GOTO line

%ONERR THEN GOSUB line

%ONERR OFF

Your error-handling routine can use any of the following new functions to determine what

the error was. They provide the error number, line and statement respectively:

ResiDOS Firmware Supplement

Page 41 of 140

FN ERR()

FN ERL()

FN ERS()

Additionally, the following command makes the last trapped error occur as normal (as if it

had not been trapped):

%REPORT

As an example, here is a program that turns on error trapping, causes an error and lets the

error routine output details of the error:
 10 %ONERR GOTO 9000

 20 PRINT "Hello"

 30 PRINT: PRINT f

 40 PRINT "Never get here"

 8999 STOP

 9000 PRINT "Error code was ";FN ERR()

 9010 PRINT "Error line was ";FN ERL()

 9020 PRINT "Error statement was ";FN ERS()

 9030 PRINT "Now causing error..."

 9040 %REPORT

Warning!

There is a known flaw in ResiDOS with error-trapping. The error-trapping variables are

shared between tasks, rather than being saved with each task individually. This means that

changing error-trapping in one task will affect all the others. I hope to resolve this in a new

release of the task manager in the near future.

ResiDOS Firmware Supplement

Page 42 of 140

Packages

There is a host of various packages available from the ResiDOS home page -

http://www.worldofspectrum.org/residos which can be downloaded and installed as part of

the ResiDOS firmware. The most useful packages are detailed below (the Task Manager,

the FATfs package, the TapeIO package, and the channels package).

The ResiDOS Task Manager

Overview

The Task Manager is an optional package that you can install on ResiDOS. Note that the

current version (v1.00) only operates with 48K tasks, so you cannot save snapshots of

128K games. You should also only attempt to run one 128K game as a task at a time,

otherwise the extra Spectrum memory will be overwritten by the 2nd 128K game. This

limitation will be removed in a future release.

When you press the NMI button on your interface, the Spectrum immediately stops

whatever it was doing (whether you were in BASIC, a word processor, a commercial game

or whatever) and enters the Task Manager.

The Task Manager screen shows a list of the current tasks running on your Spectrum,

together with the menu options that are available to you. When you first enter the task

manager, the task list will consist of just a single task, named "Task 0", which is whatever

you were doing at the time. To return to it, simply press ENTER.

Using the RAM in your interface, you can store several tasks at the same time, and switch

between them instantly from the task manager screen. The number of tasks you can have

running at once depends on the amount of RAM in your interface. Since ZXATASP

interfaces have their memory strictly divided between ROM and RAM, they can run fewer

tasks than a different interface with an equivalent amount of memory. The maximum

number of tasks allowable is 16 (this is only possible on a 1Mb ZXCF interface).

The menu options described below allow you to manage your tasks quickly and easily.

http://www.worldofspectrum.org/residos

ResiDOS Firmware Supplement

Page 43 of 140

Managing Tasks

The options available are shown on the task manager screen. Simply press the highlighted

letter to select the option.

Cursor keys (up and down)

Use these to move the highlight up and down the task list.

ENTER

Re-enters the highlighted task.

New

Creates a new task, activates it and resets the Spectrum into BASIC. (Don't worry,

all the other tasks are still there!)

Copy

Makes a copy of the highlighted task.

Delete

Deletes the highlighted task.

Purge

Deletes all tasks except the highlighted task.

Rename

Renames the highlighted task. Task names are up to 16 characters long.

Border

Sets the border colour for the highlighted task. Since it isn't possible for ResiDOS

to know the border colour, it makes a guess which is sometimes wrong. You can

change that here before saving a snapshot.

Snapshot

Saves a snapshot of the highlighted task onto the hard disk in the standard .Z80 file

format. This can be reloaded later using the %SNAPLOAD "filename" command

(which can load any 48K or 128K snapshot in .Z80 or .SNA format).

NOTE: When prompted to enter the name of the snapshot to create, please

remember to add the suffix .z80 to the filename, otherwise you will not be able to

reload your snapshot.

Other options

Turn off Spectrum

This takes you to a special "shutdown" screen, from which you can turn off the

Spectrum in safety. When you switch back on, the Task Manager will start up

again, and you will be able to continue exactly where you were, with all your tasks

still running.

ResiDOS Firmware Supplement

Page 44 of 140

The FATfs Package

Although an optional package, FATfs is installed as part of the DivIDE Plus ResiDOS

implementation.

This package adds support for reading and writing to FAT16-formatted disks to your

ResiDOS system. This is incredibly useful, since all PCs and Macs (and even some PDAs

and digital cameras etc) can use this format of disk. This means copying files (including

other packages, upgrades to ResiDOS, snapshots and Infocom games for ZXZVM)

between your PC and Speccy becomes extremely easy.

Once installed, any FAT16-formatted disks can be accessed using LOAD, SAVE and all the

other ResiDOS commands.

The current version has the following limitations, which will be addressed in a future

release:

 no support for FAT32 or FAT12 disks

 no support for long filenames

 partitions cannot be created, renamed or deleted by ResiDOS

ResiDOS Firmware Supplement

Page 45 of 140

TapeIO Package – Load / Save .tap and .tzx Files

The TapeIO Package

The TapeIO package is an optional package that you can install on ResiDOS which gives

you the ability to load and save directly to .TAP and .TZX files on your flash card or hard

disk as if it was a real tape. This means that you can take advantage of the thousands of

.TAP and .TZX emulator files available and use them with your Spectrum.

The most important commands to use are %TAPEIN and %TAPEOUT. Each of these takes the

name of a .TAP or .TZX file. Thereafter, and standard LOAD commands that would

normally access the tape will be redirected to whichever .TAP/.TZX file you specified in

the %TAPEIN command. Similarly, any standard SAVE commands that would normally

access the tape will be redirected to the .TAP/.TZX file specified in the %TAPEOUT

command. In order to redirect access to tape, simply use the %TAPEIN or %TAPEOUT

command without a filename.

For example, to load Jetpac from a jetpac.tap file, use the following commands:

%TAPEIN “jetpac.tap”

LOAD “”

To create a .tzx file containing your latest masterpiece, so that it can be loaded by an

emulator, use commands such as:
%TAPEOUT “myprog.tzx”

SAVE “My Program” LINE 10

%TAPEOUT

Controlling the tapepointer

Some more useful commands that are available are %TAPELIST and %TAPEWIND.

The first of these lists out the contents of the current .TAP/.TZX file being used for input

(ie the last one specified in a %TAPEIN command). It also shows which is the next block

that will be LOADed, with a cursor (similar to the cursor in a BASIC program listing).

ResiDOS Firmware Supplement

Page 46 of 140

With the %TAPEWIND command, you can "wind" the tape pointer forwards (using a positive

number) or backwards (using a negative number) by a number of blocks, or to a specific

block number (using the "=" option). If you do not specify any number, then the input

tapefile will be rewound to the start.

For example, use the following commands to wind the tape in different ways and see the

result on the tapelisting:

%TAPEWIND 3

%TAPELIST

%TAPEWIND -2

%TAPELIST

%TAPEWIND=6

%TAPELIST

%TAPEWIND

Finally, you can also change the behaviour when the last file is loaded from the input

.TAP/.TZX file. Normally, when this happens the tapefile is "ejected" and subsequent LOAD

commands use the real tape again, until another %TAPEIN command is used. However, if

you would prefer the tapefile to be "rewound" to the start, then use the following

command:

%TAPEMODE 1

To revert to the default behaviour (ejecting the tapefile), use:

%TAPEMODE 0

Transferring files between disk and .TAP/.TZX files

It's also easy to transfer files from within .TAP and .TZX files to separate files on your

flash card or hard disk. There are commands available to transfer files with headers

(%TAPEGET and %TAPEPUT) and also headerless files (%TAPEBGET and %TAPEBPUT). For

details, see the full command reference below.

Troubleshooting

All .TAP files should work correctly with ResiDOS, as well as some .TZX files which use

the standard Spectrum loading system. However, any .TZX files using speedloading or

other custom loaders will not work. If a game appears to stop loading from a .TZX file,

then it is likely to have a custom loader. Using the %TAPELIST command on such a file

should show which blocks ResiDOS can "see" and help to show if it is a non-standard

loader program.

If a CODE file which might overwrite the ROM area or the stack is encountered, then

TapeIO will load this byte-by-byte in "slow" mode, to ensure that ResiDOS data is not

corrupted. In such cases, the border will flash multicoloured during loading.

If you have a 128K Spectrum and find a game that fails to load, please try again after

selecting 48K mode (with the %SPECTRUM command). Many games will only load in 48K

ResiDOS Firmware Supplement

Page 47 of 140

mode by design (and would have included instructions on the cassette inlay to switch to

48K mode before loading).

TapeIO Command Reference

Here is a complete list of all the commands supported by the TapeIO package, including

several options and variants that aren't described above. Please read carefully to get the

most out of this package.

%TAPEIN "filename"

Redirect all tape LOAD commands to use the .TAP or .TZX file specified.

%TAPEIN

Redirect all tape LOAD commands back to physical tape.

%TAPEOUT "filename"

Create a new .TAP or .TZX file, and redirect all tape SAVE commands to it.

%TAPEOUT+ "filename"

Open an existing .TAP or .TZX file, and redirect all tape SAVE commands to it

(appending to the end of the file).

%TAPEOUT

Redirect all tape SAVE commands back to physical tape.

%TAPELIST

List the contents of the current input tapefile.

%TAPELIST #n

List the contents of the current input tapefile to stream "n".

%TAPEWIND n

Wind the tapepointer by "n" blocks (positive is forwards, negative is backwards).

%TAPEWIND=n

Wind the tapepointer to block number "n".

%TAPEWIND

Rewind the tapepointer to the start of the tapefile.

%TAPEGET "diskname"

Copy the next file with a header from the input tapefile onto disk, using the

specified name for the disk file.

%TAPEGET

Copy all files with a header from the input tapefile onto disk, translating names to

fit in the 8.3 name format.

%TAPEBGET "diskname"

Copy the next block (could be a header or data block) from the input tapefile onto

disk, using the specified name for the disk file.

%TAPEBGET+ "diskname"

Copy the next block (could be a header or data block) from the input tapefile onto

disk, using the specified name for the disk file. Copy the entire block, including the

block type and parity byte (which are normally stripped out).

ResiDOS Firmware Supplement

Page 48 of 140

%TAPEPUT "diskname"

Copy a disk file into the current output tapefile, complete with an appropriate

header.

%TAPEBPUT "diskname"

Copy a disk file into the current output tapefile as a headerless block (of type 255).

%TAPEBPUT "diskname", n

Copy a disk file into the current output tapefile as a headerless block (of type "n").

%TAPEBPUT- "diskname"

Copy a disk file into the current output tapefile as a headerless block, but don't add

a type byte or parity byte.

%TAPEMODE n

Set the behaviour for what happens when the end of the input tapefile is reached

(0=eject, 1=rewind).

%TAPEMODE+ n

Set the behaviour for what happens when the end of the input tapefile is reached

(0=eject, 1=rewind). Make this behaviour permanent.

%TAPEMODE- n

Set the behaviour for what happens when the end of the input tapefile is reached

(0=eject, 1=rewind). Remove any permanent behaviour.

ResiDOS Firmware Supplement

Page 49 of 140

Extended Channels

ResiDOS provides built-in support for accessing new extended channels in addition to the

three standard ("K", "S" and "P") channels. Streams can be opened and closed using the

normal OPEN # and CLOSE # commands (and ResiDOS also fixes the bug with the

Spectrum's CLOSE # command so that it is safe to use). Machine-code programmers also

have comprehensive access to these extended channels (see the programming section for

details).

Once a stream is open to a channel, you can send output to it and receive input from it

using any standard Spectrum BASIC command that allows a stream number to be

specified. Additionally, most ResiDOS commands that display output may be redirected to

a stream, allowing you to capture and manipulate such information. For example, any of

these commands are allowed:

PRINT #5;"Some text"

INPUT #7;a$

LIST #4;9000

LPRINT #4;x$

LLIST #10

CAT #6;"*.bas"

%roms+ #15

%partitions #8

%pwd #2

%map #4

%tapelist #9

Additionally, ResiDOS provides two additional functions and a command to read/write the

current position in the stream, and to read the size of the stream (not all channels support

these operations):

FN ptr#(stream)

FN ext#(stream)

POINT #stream, position

ResiDOS does not actually provide any extended channel types itself; these may be

provided by various optional packages. The most important of these is the channels

package, which you are encouraged to download and install.

ResiDOS Firmware Supplement

Page 50 of 140

Commands and functions for streams and channels

ResiDOS uses the following commands for manipulating streams and channels:

OPEN #stream, c$

This command opens a stream to a channel. The value of stream can be any number

from 0 to 15; if one of the standard streams (0-3) is specified, then its original

assignment is replaced with the new channel specified. The value of c$ is either a

single character representing one of the Spectrum's standard channels ("K", "S" or

"P"), or a string specifying a new extended channel.

The exact form of the channel specifier is documented separately for each new

channel provided, but generally it consists of a letter followed by a ">" character;

optionally, there may be further parameters inside the string (usually separated by

commas). If you want to calculate a value for a parameter, this is perfectly possible

- just remember to use the STR$ function to build up the string.

For example, to open stream 5 to a region of memory specified by the variables

addr and len, use the following command:

OPEN #5, "m>" + STR$ addr + "," + STR$ len

CLOSE #stream

This command closes a stream, flushing any output that might be buffered. If the

stream was one of the standard streams (0-3), then it is re-assigned to its default

channel (ie "K" for streams 0 & 1, "S" for stream 2 and "P" for stream 3).

For example, to close stream 5:

CLOSE #5

FN ptr#(stream)

This function returns the current position of the the pointer in the stream specified.

Not all channels support this function; see the documentation for individual

channels.

For example, to find the position of the pointer in stream 5:

LET pos=FN ptr#(5)

FN ext#(stream)

This function returns the extent (size) of the stream specified. Not all channels

support this function; see the documentation for individual channels.

For example, to find the size of stream 5:

LET size=FN ext#(5)

POINT #stream, pos

This command sets the current position of the pointer for the stream specified. Not

all channels support this function; see the documentation for individual channels.

For example, to set the pointer to the start of stream 5:

POINT #5, 0

ResiDOS Firmware Supplement

Page 51 of 140

 Channels Package

The channels package provides a number of new channels for use under ResiDOS. Most of

these are compatible with the extended channels of the ZX Spectrum +3e, although there

are also several important additions.

After installing the package, in order to make use of the new channels, you will need to

read the information on using extended channels in ResiDOS.

The channels provided are:

 File access ("I>", "O>" and "U>")

 String variables ("V>")

 Memory regions ("M>")

 Text windows ("W>")

 Null ("Z>")

 File channels

Streams may be opened to any file in one of three different access modes: input (using

the "I>" channel), output (using the "O>" channel) and update (using the "U>" channel).

In input and update modes, the file must already exist, or an error will occur. In output

mode, the file is deleted if it already exists, and then a new file is created. Once the file

is open, it can be input from (if opened in input or update modes) or output to (if opened

in output or update modes). Because of file buffering, it is essential to CLOSE # any file

channel before finishing, otherwise data may be lost.

The channel specifier for all file channel types requires the filename of the file to follow

the ">" character.

File channels support all the pointer operations (FN ptr#(), FN ext#() and POINT #).

It should be noted that files on IDEDOS disks are always stored as a number of 128-

byte "records" and so you may read rubbish at the end of a file if it is not an exact

multiple of 128 bytes in length. To avoid this problem, you should write some code or

"signature" at the end of your file which you can detect when reading it back.

Alternatively, you could write the number of bytes or entries in your file at the start.

ResiDOS Firmware Supplement

Page 52 of 140

This problem does not exist for files on FAT disks, but it would be good practice to do

this anyway, since it will then allow your program to be used with files on both FAT

and IDEDOS disks.

Examples

OPEN #4, "o>test.txt"

Creates a file named "test.txt" on the default drive for output through stream 4.

OPEN #5, "i>a:test2.txt"

Opens a file named "test2.txt" on drive A: for input through stream 5.

OPEN #6, "u>c:/data/list.txt"

Opens a file named "list.txt" in the "data" directory of drive C: for update through

stream 6.

 Variable channels

The "V>" channel can be used to direct output to or input from a string variable, which

can be easily manipulated within a BASIC program. This would allow you to (for

example) examine disk catalogues in your BASIC program, or make an auto-running

game demo (by inputting from a string containing set keystrokes).

The channel specifier for the variable channel type requires the name of the string

variable to follow the ">" character.

Variable channels support all the pointer (FN ptr#(), FN ext#() and POINT #).

The string specified must be a character array with a single dimension, large enough to

hold the maximum amount of data you expect to have to deal with.

Example

Here is an example program that outputs a list of installed ROMs to a string.
10 DIM a$(1000)

20 OPEN #8, "V>a$"

30 %roms+ #8

40 LET l=FN ptr#(8)

50 CLOSE #8

60 PRINT "Assignment length is ";l

70 PRINT "List is:"

80 PRINT a$(TO l)

 Memory channels

The "M>" channel can be used in a very similar way to the variable channels. However,

as it is a fixed memory region, it is more suitable for use by machine-code programs.

The channel specifier for the memory channel type requires the address and length of

the memory region (separated by a comma) to follow the ">" character.

Memory channels support all the pointer operations (FN ptr#(), FN ext#() and POINT

#).

ResiDOS Firmware Supplement

Page 53 of 140

Example

Here is an example program that outputs a disk catalogue to memory and then runs a

machine-code routine to process it:
10 CLEAR 29999

20 OPEN #7, "M>30000,1000"

30 CAT #7

40 LET x=USR myroutine

50 CLOSE #7

 Window channels

The "W>" window channels are the most complex of the extended channels currently

available on ResiDOS. Two different types of window, with very different behaviours,

are available:

+3e-compatible windows

These windows are the default type, and provide the same facilities as those provided by

the ZX Spectrum +3e (except that, under ResiDOS, input is also supported). These

windows support Spectrum-style control codes, so that you can use normal PRINT items

such as INK, PAPER and AT (amongst others) in your PRINT # commands, they also

support Spectrum tokens and graphics characters (so that you can use LIST # directly,

for example).

VT52-compatible windows

These windows are created when you specify a character set address of zero (see below

for details). These windows broadly emulate a subset of the VT52 terminal, and so use

completely different control codes to the +3e-compatible windows. They are intended

for applications such as CP/M and internet application console windows. They support

only the standard ASCII character set, not Spectrum tokens or graphics characters.

Additionally, they do not support line input; only (non-echoed) character input is

provided.

The channel specifier for the window channel type requires the following values

(separated by commas) to follow the ">" character: top line (0-23), leftmost column (0-

31), height (1-24), width (1-32), and optionally character size (3-8) and character set

address. If no character size is specified, the default is 8. If a character set address is

given, then this is used instead of the built-in fonts; this allows you to use nice fonts

such as those provided with art programs and adventure games. If the character set

address is given as zero (0), then a VT52-compatible window is created instead of a

+3e-compatible window.

Note that the character size has no bearing on the way the window is defined, but it does

affect the number of "actual" columns you have available. For example, the following

defines a window the size of the entire screen; but because a character size of 5 is

specified, the number of characters that can be printed in the window at any time is

24x51:

 OPEN #5,"w>0,0,24,32,5"

Window channels do not support the pointer operations. However, the "set position"

operation (POINT #) can be used to change the region of memory to which window

output is sent. Normally, this is the standard Spectrum screen address (16384), but it can

be set to any 8K boundary. This is mostly useful for machine-code programmers, as it

ResiDOS Firmware Supplement

Page 54 of 140

allows them to perform window output directly to the 128K Spectrum's alternate screen

at 49152 in page 7, for example.

+3e-compatible windows

When PRINTing to +3e-compatible windows, you can use many of the same control

functions as you can with the normal screen. For example: ' (apostrophe; start a new

line), , (comma; start a new column), TAB, AT, INK , PAPER, FLASH, BRIGHT , INVERSE,

OVER. Of these, only AT behaves slightly differently; it takes y to be a pixel line and x to

be an actual character column.

When first defined, windows are in non-justified mode, but they can be set to be left-,

full- or centre-justified. Note that in justified mode, some features and control codes

cannot be accessed, so you may need to switch back to non-justified mode to use them.

Input is supported in +3e-compatible windows. If you use INKEY$ # , then the keyboard

is simply scanned and a character returned without anything being output to the

window. If you use INPUT #, then a cursor is added to the window at the current

position. The user can then input any text desired, using the left and right arrows to

move along the text input so far, or the up and down arrows to move to the start or end

of the text. The DELETE key deletes the character to the left of the cursor, and the ENTER

key completes the input. Depending upon memory available, the entire size of the

window can be used in the input, although care is taken to ensure that no input character

is ever scrolled off the top of the window. An absolute maximum of 255 characters is

allowed in the input line.

Control Codes

A complete list of control codes follows; these codes can be sent to a window by

PRINTing them using the CHR$ function. If a code is preceded by (j) then it will be

ignored if issued in justified mode (however, their settings will still be taken into

account; for example, you can justify double-width text, but you must set it before

entering justified mode). If a code is preceded by (e) then it can only be used in justified

mode if the "embedded codes" feature has been set (which requires more memory to be

allocated for the channel).

0 Turn justification off

1 Turn justification on

2 Save current window contents

3 Restore saved window contents

4 Home cursor to top left

5 Home cursor to bottom left

(j) 6 Tab to left or centre of window (PRINT comma)

7 Scroll window

(j) 8 Move cursor left

(j) 9 Move cursor right

10 Move cursor down

11 Move cursor up

(j) 12 Delete character to left of cursor

13 Start new line (PRINT apostrophe)

14 Clear window to current attributes

15 Wash window with current attributes

ResiDOS Firmware Supplement

Page 55 of 140

(e) 16, n Set INK n (0-7)

(e) 17, n Set PAPER n (0-7)

(e) 18, n Set FLASH n (0-1)

(e) 19, n Set BRIGHT n (0-1)

(e) 20, n Set INVERSE n (0-1)

(e) 21, n Set OVER n (0-1)

(j) 22, y, x Set cursor to pixel line y, character size column x

(j) 23, n TAB to character size column n

(e) 24, n Set attributes n (0-255)

(j) 25, n If n=1, then characters 165-255 will be printed as UDGs, with data located

at the end of the standard UDGs. If n=0, then characters 165-255 will be

printed as BASIC keyword tokens (the default).

(e) 26, n Fill window with byte n. Attributes are affected, but not cursor position.

(e) 27, n Fill window with character n. Attributes and cursor position are affected.

(j) 28, n Set double width (n=1) or normal width (n=0).

(e) 29, n Set height n (0=normal, 1=double, 2=reduced, 3=double reduced)

30, n Set justification mode (0=left, 1=centred, 2=full)

(j) 31, n Allow embedded codes in justified mode if n=1.

VT52-compatible windows

VT52-compatible windows behave very differently from +3e-compatible windows, and are

most useful for applications such as CP/M and internet console applications. They do not

support line input (INKEY$# and INPUT # are allowed, but are implemented as non-echoed

character input) or non-ASCII characters (such as the Spectrum tokens and graphics

characters). By default, these windows operate in a "non-wrapping" mode (when the end of

a line is reached, text does not wrap automatically to the next line unless CR and LF codes

are issued) and with a visible cursor, although these modes can be changed.

Control Codes

The full list of control codes supported is as follows (other control codes are ignored):

7 (BEL) Sounds a beep.

8 (BS) Moves the cursor 1 character to the left and replaces the character under the

cursor with a space. If wrapping is enabled and the cursor is already at the

left, it moves to the rightmost position of the previous line (unless it is

already on the top line).

10 (LF) Moves the cursor down 1 line, scrolling the window up if necessary.

13 (CR) Moves the cursor to the leftmost column of the current line.

27 (ESC) Introduces an escape sequence or a literal character.

The following escape sequences are interpreted. If an ESC character is

followed by any character other than those in this list, then that character is

output as a literal (without any further interpretation) directly to the window,

and the escape sequence is terminated.

ESC A Moves the cursor up. If the cursor is already on the top row, it

has no effect.

ESC B Moves the cursor down. If the cursor is already on the bottom

row, it has no effect.

ESC C Moves the cursor right. If the cursor is already in the rightmost

column, it has no effect.

ResiDOS Firmware Supplement

Page 56 of 140

ESC D Moves the cursor left. If the cursor is already in the leftmost

column, it has no effect.

ESC E Clears the window. The cursor position is not affected.

ESC H Homes the cursor (ie moves the cursor to row 0, column 0).

ESC I (Reverse index). Moves the cursor up 1 line, scrolling the

window down if necessary.

ESC J Erases all characters from the cursor (including the character

under the cursor) to the end of the window. The cursor position

is not affected.

ESC K Erases all characters from the cursor (including the character

under the cursor) to the end of the line. The cursor position is

not affected.

ESC L Inserts a line. The row with the cursor on it and all rows below

are scrolled down 1 line. The cursor row is cleared. The cursor

position is not affected.

ESC M Deletes the row with the cursor on it. All rows below are

scrolled up 1 line. The bottom row is cleared. The cursor

position is not affected.

ESC N Deletes the character under the cursor. All characters to the right

of the cursor are moved 1 column to the left. The character at

the end of the row is cleared. The cursor position is not affected.

ESC Y r c Moves the cursor to the given position. r is the row number plus

32, and c is the column number plus 32. If the position is beyond

the edge of the window, the cursor is moved to the edge of the

window.

ESC b c Sets the foreground (ink) colour. c can be either a Spectrum

colour (0 to 7) or a colour value compatible with Locomotive's

+3 CP/M implementation, as follows:

32, black

34 or 35, blue

40 or 44, red

42 or 47, magenta

64 or 80, green

66 or 83, cyan

72 or 92, yellow

74 or 95, white

ESC c c Sets the background (paper) colour. c can be either a Spectrum

colour (0 to 7) or a colour value compatible with Locomotive's

+3 CP/M implementation, as follows:

32, black

34 or 35, blue

40 or 44, red

42 or 47, magenta

64 or 80, green

66 or 83, cyan

72 or 92, yellow

74 or 95, white

ResiDOS Firmware Supplement

Page 57 of 140

ESC d Erases all characters from the start of the window up to the

cursor (including the character under the cursor). The cursor

position is not affected.

ESC e Enables the cursor blob.

ESC f Disables the cursor blob.

ESC j Saves the cursor position.

ESC k Restores the cursor position (as saved by ESC j).

ESC l Erases all characters on the current line. The cursor position is

not affected.

ESC o Erases all characters from the start of the line up to the cursor

(including the character under the cursor). The cursor position is

not affected.

ESC p Enables reverse video mode.

ESC q Disables reverse video mode.

ESC r Enables underline mode.

ESC u Disables underline mode.

ESC v Enables wrapping at the end of a line.

ESC w Disables wrapping at the end of a line.

 Null channels

The "Z>" channel simply discards all output that is sent to it. It always returns a CR

character (ASCII 13) when it is read from (so the INPUT # command always returns an

empty string). This can be handy if you wish to execute a command which produces

output that you do not want.

The channel specifier for the null channel type is simply "Z>".

Null channels support all the pointer operations (FN ptr#(), FN ext#() and POINT #).

Example

Here is an example program that does nothing much at all!
 10 OPEN #4, "Z>"

 30 CAT #4

 40 INPUT #4;x$

ResiDOS Firmware Supplement

Page 58 of 140

ResiDOS Command Reference

The following is a complete list of commands currently provided by ResiDOS. "Hard disk"

refers to hard disks, CompactFlash cards or SD/MMC cards (depending upon your

interface).

Note that this reference does not include commands provided by optional packages, such

as TapeIO and the ZX80/ZX81 emulators. Please see the package instructions for

information on the commands that they provide.

For all commands, the % characters are optional. They're only required if the command

would otherwise be accepted by BASIC (eg, in most BASICs, LOAD "name" would load a

program from tape, so you need to use LOAD %"name" to load a program from disk or

compactflash). For BASICs which use keyword entry (eg standard Spectrum BASIC), it's

usually convenient to start commands which don't have a keyword with %, simply to take

the Spectrum out of K mode and into L mode. On single-character-entry BASICs like SE

BASIC or Gosh Wonderful there's no need to bother with the leading %.

For commands which simply display some information (ie CAT, DIR, ROMS,

PARTITIONS, MAP) you can redirect the display to any stream by specifying a stream

number after the command name (but before any parameters). For example:

%ROMS+ #3

%DIR #4;"*.bas"

Disk management commands

%DRIVE unit, cyl, head, sec

Specifies the parameters (number of cylinders, heads and sectors) of your

hard disk. "Unit" is 0 for the master drive, or 1 for the slave drive. Only needs

to be done if the auto-detection fails to work.

%DRIVE unit, 0, 0, 0

Disables any detection of "unit" altogether. This might help improve boot

speed slightly if, for example, you never have a slave drive attached.

%DRIVE unit

Changes "unit" to use auto-detection again, rather than manually set

parameters.

%DRIVES

Unmaps all current drives and re-initialises IDEDOS (causing disks to be re-

detected, and drives mapped back again), without losing any of the program

or data currently in memory. This is useful to allow swapping of

compactflash cards while the Spectrum is still on.

ResiDOS Firmware Supplement

Page 59 of 140

%REFORMAT unit, maxpartition

Completely erases the hard disk (unit=0 for master, 1 for slave) and initialises

it with the IDEDOS structure. Following this, you will be able to use the

partition management commands to add partitions for storing data on the

disk. The maxpartition number is approximately the total number of

partitions you will be able to create; don't make this too large (hundreds of

partitions), or other disk management routines will be too slow. Don't make it

too small, or you may not be able to create all the partitions you want (some

partitions are used to keep track of free space, etc). Suggested values are

between 15-63.

%REFORMAT unit,maxpartition,cyls

Same as the previous command, but limits IDEDOS to using the first cyls

cylinders on the disk, allowing it to be shared with other filesystems (such as

FAT, used by PCs and the optional FATfs package).

Partition management commands

Note that some commands in this section only work with an IDEDOS drive (formatted

with the %REFORMAT command. For other filesystems (eg with the optional FATfs

package) it may not be possible to create, delete or rename partitions; see the

documentation for the filesystem package for details of what it supports.

%PARTITIONS

Displays a list of all the partitions on your disk.

%PARTITIONS+

Displays an expanded listing of all the partitions on your disk, including their

physical positions on the disk.

%PARTITION "name",size

Creates a new data partition on your disk, for storing files. Partition names

are not case-sensitive, and can be up to 16 characters long, and include a unit

identifier ("0>" or "1>"). The maximum partition size is 16Mb. Sizes can be

specified in kilobytes (numbers larger or equal to 256), or megabytes

(numbers up to 255).

%PARTITION "name",size,2

Creates a swap partition on your disk for temporary use by the Spectrum.

These are not currently used by ResiDOS itself, but may be used by

applications in the future. The maximum partition size is 16Mb. Sizes can be

specified in kilobytes (numbers larger or equal to 256), or megabytes

(numbers up to 255). (NB: In fact, you can specify any partition type in this

command, but only 2 (swap) and 3 (data) are useful types).

ResiDOS Firmware Supplement

Page 60 of 140

ERASE % "unit>name"

%ERASE "unit>name"

%ERA "unit>name"

%DEL "unit>name"

Deletes a partition, together with all the files it contains. This can only be

done if no drive is currently "mapped" to it. The unit identifier must be

present in this command.

%REN "unit>name","newname”

Renames a partition. The unit identifier must be present in the original name

in this command.

Drive mapping commands

%AUTOMAP+

Turns automatic drive mappings on.

%AUTOMAP-

Turns automatic drive mappings off.

%MAP

Displays a list of the current drive mappings.

%MAP "drive","name"

Maps a drive ("A:" to "P:") to the partition specified. A maximum of 6 drives

can be mapped at any time.

%MAP+ "drive","name"

Maps a drive, and makes the assignment permanent, so it will automatically

be restored each time you switch on.

%UNMAP "drive"

Unmaps the drive ("A:" to "P:") specified.

%UNMAP+ "drive"

Unmaps a drive. Additionally, removes any permanent assignment for the

drive.

Drive, directory and path commands

%CD "location:path"

Makes the specified location and path the default. The location can be a user

area (0-15) or a drive (A-P), or both. The path can be any list of directories

(seperated with / or \ characters) from the current directory. If you don't

specify all of these, the current default for the others will be retained. Any

filenames that don't include a drive letter, user area or path will now refer to

these defaults.

%CD+ "location:path"

Makes the specified location and path the default, and makes this permanent

so that it will also be the default on startup. Each drive can have its own

ResiDOS Firmware Supplement

Page 61 of 140

default path. If you don't set any defaults, then the root directory and user area

0 on drive A: will be used when you switch on.

%MD "directory"

%MKDIR "directory"

Creates a directory.

%RD "directory"

%RMDIR "directory"

Removes a directory (it must be empty).

%PWD

Prints the current working drive, user area and directory.

File management commands

CAT %

%CAT

%DIR

Shows a list of all files on the default drive in the default user area.

CAT+ %

%CAT+

%DIR+

Shows an expanded listing of all files on the default drive in the default user

area.

CAT % "filespec"

%CAT "filespec"

%DIR "filespec"

Shows a list of files that match the file specification provided. This can

include a user area, drive, filename, extension and wildcard characters (* and

?).

CAT+ % "filespec"

%CAT+ "filespec"

%DIR+ "filespec"

Shows an expanded listing of files that match the file specification provided.

LOAD %"filename"

Loads a BASIC program from hard disk.

LOAD %"filename" CODE

Loads a CODE file from hard disk. If the file came from another system (ie

was not SAVEd by ResiDOS or a +3/+3e), then the default load address will

be 32768.

LOAD %"filename" CODE a

Loads a CODE file from hard disk at a specific address.

ResiDOS Firmware Supplement

Page 62 of 140

LOAD %"filename" CODE a, l

Loads a CODE file from hard disk at a specific address, and with a specific

length.

LOAD %"filename" SCREEN$

Loads a screen from hard disk.

SAVE %"filename"

Saves a BASIC program to hard disk.

SAVE %"filename" LINE n

Saves an auto-starting BASIC program to hard disk.

SAVE %"filename" CODE a, l

Saves a CODE file to hard disk.

SAVE %"filename" SCREEN$

Saves a screen to hard disk.

%SNAPLOAD "filename"

Loads a standard .SNA or .Z80 snapshot from hard disk.

%SNAPLOAD+ "filename"

Loads a standard .SNA or .Z80 snapshot from hard disk. Overwrites a small

amount of screen (instead of stack memory), which aids compatibility with

some snapshots.

%SNAPLOAD- "filename"

Loads a standard .SNA or .Z80 snapshot from hard disk. Starts the snapshot

with the built-in ROM, which aids compatibility with some snapshots.

%SNAPLOAD+- "filename"

Loads a standard .SNA or .Z80 snapshot from hard disk. Uses the screen and

the built-in ROM, which aids compatibility with some snapshots.

LINE %"filename", line

Changes the auto-run line number for a BASIC program. If the line provided

is 0, auto-running is disabled for the program.

ERASE % "filespec"

%ERASE "filespec"

%ERA "filespec"

%DEL "filespec"

Erases a file from the hard disk. The filespec can include wildcards to erase

multiple files at once.

%REN "filename","newname"

Renames a file (wildcards are not allowed). This command can be used to

change the user area a file is located in (but not the drive).

%ATTRIB "filespec","+attrib"

Adds the attribute (P=protected, S=system or A=archive) to the file (or group

of files) specified.

ResiDOS Firmware Supplement

Page 63 of 140

%ATTRIB "filespec","-attrib"

Removes the attribute (P=protected, S=system or A=archive) from the file (or

group of files) specified.

%CP "filename","filename2"

Copies a single file to a new file, which may be in the same location, or a

different one.

%CP "filespec","location:"

Copies one or more files (if using wildcards) to another location.

Customisation commands

INK % n

Sets ink colour to n and saves the current colour scheme as the default.

PAPER % n

Sets paper colour to n and saves the current colour scheme as the default.

BRIGHT % n

Sets bright to n and saves the current colour scheme as the default.

FLASH % n

Sets flash to n and saves the current colour scheme as the default.

ATTR % n

Sets attributes to n and saves them as the default colour scheme.

%AUTORUN "filename"

Sets the autorun file, which will only be executed with %AUTORUN.

%AUTORUN+ "filename"

Sets the autorun file, which will be executed automatically on boot, or with

%AUTORUN.

%AUTORUN-

Removes any autorun file setting.

%AUTORUN

Loads and runs the autorun file.

%SPEED n

Sets the processor speed to n. Supported only on ZX-Badaloc, where n is 0

(3.54MHz), 1 (7MHz), 2 (14MHz) or 3 (21MHz). Add 4 to enable the

clock/screen/interrupt doubler (gives speed up to 42MHz).

%SPEED+ n

Sets the processor speed to n and makes this the default speed when starting

up.

%SPEED- n

Sets the processor speed to n and removes any default speed, so the standard

system speed is used when starting up.

ResiDOS Firmware Supplement

Page 64 of 140

ROM management commands

%INSTALL "filename"

Installs a file from the hard disk to the interface memory as a package or an

Interface II-type ROM. NB: you must first CLEAR 32767 or lower.

%INSTALL "filename",n

Installs a file image from the hard disk to the interface as a type "n" ROM.

NB: you must first CLEAR 32767 or lower. Values for "n" are made as the

sum of the following, and are ignored for packages:

0: for an Interface II ROM (or any other ROM that does not require ResiDOS

support)

1: for a BASIC ROM

16: to install the ROM into the writeable "RAM" part of the interface

memory

32: to disable the NMI button for this ROM (only affects BASIC ROMs)

%INSTALL "name"@addr

%INSTALL "name"@addr,n

As the previous commands, but indicates that the ROM image is already

loaded into memory at the specified address and does not need to be loaded

from a file. The name refers only to the name that will be given to the ROM

when it is installed. NB: you should CLEAR to an address lower than addr

before loading the image to memory and then executing the %INSTALL

command.

%ROMS

Shows a list of all installed ROMs.

%ROMS+

Shows a list of all installed ROMs, including hidden system ones.

%UNINSTALL"name"

Uninstalls a ROM.

%ROM "name"

Restarts computer using selected BASIC or Interface 2 ROM.

%ZX

Restarts computer using internal ROM, effectively disabling the interface.

ResiDOS Firmware Supplement

Page 65 of 140

Spectrum mode commands

%SPECTRUM

Switch 128K Spectrum into 48K mode until the next time the computer is reset.

%SPECTRUM+

Always run in 48K mode, even after a reset.

%SPECTRUM-

Turns off permanent 48K mode (you'll need to reset to return to 128K mode).

ZXATASP: OUT 671,192:OUT 671,128

ZXCF: OUT 4287,128

ZXMMC+: OUT 127,0

ZX-Badaloc: OUT 21727,0

divIDE Plus: OUT 23,0

Disables ResiDOS, whilst keeping the current program in memory.

ZXATASP: OUT 671,64:OUT 671,0

ZXCF: OUT 4287,64

ZXMMC+: OUT 127,192

ZX-Badaloc: OUT 21727,200

divIDE Plus: OUT 23,104

Re-enables ResiDOS, whilst keeping the current program in memory.

Error-trapping commands

%ONBREAK THEN CONTINUE

Turns on BREAK-trapping. The THEN is optional.

%ONBREAK OFF

Turns off BREAK-trapping.
%ONERR THEN GOTO line

Turns on error-trapping. If an error occurs, control is transferred to the line

indicated. The THEN is optional.
%ONERR THEN GOSUB line

Turns on error-trapping. If an error occurs, control is transferred to the line

indicated. When a RETURN is encountered, execution continues at the statement

after the error occurred. The THEN is optional.

%ONERR OFF

Turns off error-trapping.

%REPORT

Reports the last error that was trapped.

ResiDOS Firmware Supplement

Page 66 of 140

Error-trapping functions

FN %ERR()

Gives the error number of the last error that was trapped.

FN %ERL()

Gives the line number of the last error that was trapped.

FN %ERS()

Gives the statement number of the last error that was trapped.

Channel commands

OPEN # stream, c$

Opens a stream (0..15) to the channel specified by c$. This may be a standard

channel ("K", "S" or "P") or a new channel provided by a package.

CLOSE # stream

Closes a stream (0..15). If the stream is in the range 0..3, the original default

channel assignment is restored.

POINT # stream, pos

Sets the current pointer position of the stream to pos.

Channel functions

FN %PTR#(stream)

Returns the current pointer position of the stream specified.

FN %EXT#(stream)

Returns the extent (size) of the stream specified.

ResiDOS Firmware Supplement

Page 67 of 140

ResiDOS Programming

From v1.40, it is possible to access some of the features of the operating system from

machine-code programs, so that utility programs which access files can be written.

Calls are available in ResiDOS using hook codes, which are invoked using the RST 8

instruction followed by a hook code. There are two main hook codes available to

programmers: the version information hook code, which detects which version of ResiDOS

is available (if any), and the package call hook code, which is used to access all other

facilities.

All the following pieces of code are provided in the format used by Interlogic's free z80asm

assembler which is available for many platforms at Z88 Forever!

(www.worldofspectrum.org/z88forever). Binaries are provided for several platforms, and

most others (including MacOS X) can compile the source package. Additionally, instead of

using "magic numbers" for the various call IDs etc, these are defined as meaningful words.

You should download the resitools file from the ResiDOS Home page

(www.worldofspectrum.org/residos), which contains the necessary include files, together

with an example utility program (assembly file and pre-built TAP/TZX).

Detecting ResiDOS

Any program which is going to use ResiDOS facilities must first check that it is installed,

and that a suitable version number is available. You should check for a version which is

high enough to support all the calls you are going to use. ResiDOS version 1.40 was the

first to support package calls; each call introduced subsequently has the first version for

which it was available listed.

Some suitable code for testing the version follows. It can be called from BASIC, and

returns the version number in BC (or 0 if not installed).
.residetect

 ld hl,(ERR_SP)

 push hl ; save the existing ERR_SP

 ld hl,detect_error

 push hl ; stack error-handler return address

 ld hl,0

 add hl,sp

 ld (ERR_SP),hl ; set the error-handler SP

 rst RST_HOOK ; invoke the version info hook code

 defb HOOK_VERSION

 pop hl ; ResiDOS doesn't return, so if we get

 jr noresidos ; here, some other hardware is present

.detect_error

 pop hl

 ld (ERR_SP),hl ; restore the old ERR_SP

 ld a,(ERR_NR)

 inc a ; is the error code now "OK"?

 jr nz,noresidos ; if not, ResiDOS was not detected

 ex de,hl ; get HL=ResiDOS version

 push hl ; save the version

 ld de,$0140 ; DE=minimum version to run with

 and a

 sbc hl,de

 pop bc ; restore the version to BC

 ret nc ; and return with it if at least v1.40

.noresidos

 ld bc,0 ; no ResiDOS

 ld a,$ff

 ld (ERR_NR),a ; clear error

 ret

ResiDOS Firmware Supplement

Page 68 of 140

Detecting ResiDOS from BASIC

You may wish to detect whether ResiDOS is installed from BASIC (this may be done

before attempting to use a ResiDOS BASIC command to load a machine code file from

disk, for example).

The suggested way to do this (as used by the ResiDOS installer program) is to check

whether the ResiDOS initialisation hook is present in the BASIC ROM. This is done as

follows:

IF PEEK 4768=207 AND PEEK 4769=254 THEN PRINT "ResiDOS is installed"

Note that there is no way to determine the version of ResiDOS which is installed without

using machine-code.

Package calls

The facilities of ResiDOS are divided up into packages, each of which provides its own set

of calls. Two packages are currently provided: the ResiDOS package itself, and the

IDEDOS package. The first of these provides system functions not related to disk access;

the other provides all the useful calls for accessing partitions and files.

Making a package call involves the following steps:

 setting up registers required by the call

 switching to the alternate set, and loading B with the package ID and HL with the

call ID

 invoking the package call hook code

 checking for errors if the carry flag is reset (Fc=0)

 examining the registers returned by the call

Non-standard Packages

From ResiDOS v1.40, two packages have always been available: ResiDOS and IDEDOS.

These packages work in a slightly different way to all subsequently-released packages.

For these packages, the alternate registers are set up with B=package ID (PKG_RESIDOS

or PKG_IDEDOS) and HL=call ID (as listed in the call references).

Here is some generic code to make a ResiDOS or IDEDOS package call. Note that if you

are intending to return to BASIC at any point, you should always preserve the alternate HL

register pair (H'L') as this is required by BASIC:
 ; set up any entry parameters here

 exx

 ld b,package_id

 ld hl,call_id

 rst RST_HOOK ; invoke the package call hook code

 defb HOOK_PACKAGE

 jr nc,process_error ; handle error if Fc=0

 ; handle any return values here

ResiDOS Firmware Supplement

Page 69 of 140

Standard Packages

From ResiDOS v2.00, a new standardised system was introduced to make calls to all

subsequently-released packages.

For these packages, the alternate registers are set up with BC=call ID (as listed in the call

references). In fact, this call ID is made up of two 8-bit values: B=package ID and C=call

number, but these are usually referred to as a single 16-bit call ID value.

Note that any call to a standard package may fail with Fc=0 and

A=rc_resi_package_not_found if the package is not installed, or if the version of the

package installed is not high enough to support the call.

Code to invoke a call provided by a standard package would be:
 ; set up any entry parameters here

 exx

 ld bc,call_id

 rst RST_HOOK ; invoke the package call hook code

 defb HOOK_PACKAGE

 jr nc,process_error ; handle error if Fc=0

 ; handle any return values here

Standard Calls

All standard packages provide a set of 8 standard calls (where B=package ID and

C=$00..$07). These are mostly of use only to ResiDOS itself, to manage the packages.

However, one of these standard calls can be used to determine the version of a package that

is installed, and this can be used by application programs to ensure that a recent-enough

version of the package is available to them.

This is the PKG_STDCALL_INFO ($02) call, and can be used by setting A=info_version

(0) and making the call. If the package is present, the call will be successful (Fc=1) and BC

contains the binary-coded-decimal version number of the installed package. If the call fails

(Fc=0), an error of A=rc_resi_package_not_found will be returned.

For example, to check what version (if any) of the TapeIO package is installed, use the

following code:
 ld a,info_version

 exx

 ld bc,TAPEIOPKG_ID*$100+PKG_STDCALL_INFO

 rst RST_HOOK ; invoke the package call hook code

 defb HOOK_PACKAGE

 jr nc,process_error ; handle error if Fc=0

 ; BC holds version number (in BCD form)

ResiDOS Firmware Supplement

Page 70 of 140

The ResiDOS Package

This package provides calls to access ResiDOS facilities and hardware features (such as

extra built-in memory). The calls provided can be used without knowing whether your

application is running on a DivIDE Plus, ZXCF, ZXATASP or any future interface which

may be supported by ResiDOS.

The ResiDOS Package provides the following calls:

 RESI_REPORT

 RESI_BASIC

 RESI_GETPAGER

 RESI_FINDPKG

 RESI_FINDBASIC

 RESI_ALLOC

 RESI_DEALLOC

 RESI_LOGO

 RESI_MESSAGE

 RESI_NMISVC

 RESI_BROADCASTEXP

 RESI_CONFIG

 RESI_CHANNELSVC

 RESI_STREAM_OPEN

 RESI_STREAM_CLOSE

 RESI_STREAM_IN

 RESI_STREAM_OUT

 RESI_STREAM_PTR

 RESI_STREAM_SELECT

 RESI_COMMAND

 RESI_IM1SVC

 RESI_TEMPSVC

 RESI_STREAM_LINEIN

RESI_REPORT ($0310)

Generates report message for specified ResiDOS/IDEDOS error code.

Available from: v1.40

 IN: A=error code returned by ResiDOS/IDEDOS

 B=package ID (only needed if A=rc_pkg_*)

 OUT: -

 Register status on return:

 (call does not return)

Example:
 ld a,rc_noswap ; "no swap partition"

 exx ; switch to alternate set

 ld b,PKG_RESIDOS ; ResiDOS package

 ld hl,RESI_REPORT ; ResiDOS call ID

 rst RST_HOOK ; invoke the package call hook code

 defb HOOK_PACKAGE

ResiDOS Firmware Supplement

Page 71 of 140

RESI_BASIC ($0313)

Calls a routine in the current BASIC ROM. This isn't terribly useful for normal programs,

but is provided to allow packages to call standard routines in the BASIC ROM. Note that

the "current" BASIC ROM may be an alternate such as Gosh Wonderful or SE BASIC and

so only well-known entry points should be used. The IY register pair is set to ERRNR

($5c3a) by ResiDOS before the BASIC ROM routine is called.

Available from: v1.84

 IN: IY=address of routine in BASIC ROM

 Other parameters as required by routine

 OUT: Outputs from routine in BASIC ROM

 Register status on return:

 As defined by BASIC ROM routine

Example:
 ld ix,$4000 ; parameters needed by

 ld de,$1b00 ; BASIC ROM's "SA-BYTES"

 ld a,$ff ; routine to save a screen to tape

 ld iy,$04c2 ; SA-BYTES routine address

 exx ; switch to alternate set

 ld b,PKG_RESIDOS ; ResiDOS package

 ld hl,RESI_BASIC ; ResiDOS call ID

 call PACKAGE_CALL_PKG ; make the call from this package

RESI_GETPAGER ($031c)

Installs a routine to the specified location which can be used to switch built-in interface

memory to the bottom 16K ($0000-$3fff), where the BASIC ROM is normally located.

The routine can be located anywhere you like within the Spectrum's standard memory map

(you should allow a space of 32 bytes to hold the routine). If running on a 128K Spectrum,

you can place it within any of the additional pages (although it is your responsibility to

ensure the correct page is switched in).

Once you have obtained this routine, you can call it at any time with a "bank ID" in A

which has previously been provided to you by the calls RESI_FINDPKG,

RESI_FINDBASIC or RESI_ALLOC. Do not use any other values! After calling the

routine, the 16K memory bank indicated by the "bank ID" will be located at $0000-$3fff. If

you are switching in a bank obtained by RESI_ALLOC, don't forget to disable interrupts

first, otherwise you may crash. It is safe to leave interrupts enabled when paging in a

package or BASIC, provided the interrupt mode is 1.

Available from: v1.84

 IN: DE=address of 32-byte area to hold paging routine

 OUT: Fc=1, success

 Register status on return:

 /IXIY same

 AFBCDEHL/.... different

ResiDOS Firmware Supplement

Page 72 of 140

The paging routine is called as follows:

 IN: A=bank ID

 OUT: -

 Register status on return:

 AFBCDEHL/IXIY same

 /.... different

An example of using the call, and the paging routine is as follows:
 ld de,mypager ; location for paging routine

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_GETPAGER ; get paging routine

 rst RST_HOOK

 defb HOOK_PACKAGE

 jr nc,failed ; call failed if Fc=0

 ; more program

 di ; disable interrupts

 ld a,(mybank) ; bank obtained by RESI_ALLOC

 call mypager ; switch it in to $0000-$3fff

 ; more program

 ld a,(basicbank) ; bank obtained by RESI_FINDBASIC

 call mypager ; switch BASIC ROM back in

 ei ; re-enable interrupts

 ; more program

.mypager

 defs 32 ; 32 bytes to hold paging routine

RESI_FINDPKG ($031f)

Obtains the bank ID for a package, so that the programmer can page in the package directly

using a pager routine obtained with RESI_GETPAGER.

Available from: v1.84

 IN: A=package ID

 OUT(s): Fc=1, A=bank ID

 OUT(f): Fc=0, A=error code

 Register status on return:

 DEHL/IXIY same

 AFBC..../.... different

Example:
 ld a,PKG_IDEDOS ; request bank for IDEDOS package

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_FINDPKG ; get bank

 rst RST_HOOK

 defb HOOK_PACKAGE

 jr nc,failed ; call failed if Fc=0

 ld (idedos_bank),a ; save for later

ResiDOS Firmware Supplement

Page 73 of 140

RESI_FINDBASIC ($0322)

Obtains the bank ID for the version of BASIC currently being used, so that the programmer

can page it back in directly using a pager routine obtained with RESI_GETPAGER.

Available from: v1.84

 IN: -

 OUT(s): Fc=1, A=bank ID

 OUT(f): Fc=0, A=error code

 Register status on return:

 ..BCDEHL/IXIY same

 AF....../.... different

Example:
 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_FINDBASIC ; get bank

 rst RST_HOOK

 defb HOOK_PACKAGE

 jr nc,failed ; call failed if Fc=0

 ld (basic_bank),a ; save for later

RESI_ALLOC ($0325)

Requests a 16K bank of RAM for the program's use. If successful, the bank can be

switched in to $0000-$3fff by disabling interrupts and using a pager routine obtained with

RESI_GETPAGER. A program or package can request as many banks as it likes, and

switch between them using the pager routine.

Available from: v1.84

 IN: -

 OUT(s): Fc=1, A=bank ID

 OUT(f): Fc=0, A=error code

 Register status on return:

 /IXIY same

 AFBCDEHL/.... different

Example:
 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_ALLOC ; get free bank

 rst RST_HOOK

 defb HOOK_PACKAGE

 jr nc,failed ; call failed if Fc=0

 ld (mybank),a ; save for later

ResiDOS Firmware Supplement

Page 74 of 140

RESI_DEALLOC ($0328)

Frees a 16K bank of RAM previously obtained with RESI_ALLOC. After using this call,

the program or package may not access the bank again. If a program fails to de-allocate its

banks, they will be reclaimed by the system the next time that ResiDOS starts up. If a

package fails to de-allocate its banks when it is uninstalled, they will not be freed (this

would be considered to be a bug in the package).

Available from: v1.84

 IN: A=bank ID

 OUT(s): Fc=1

 OUT(f): Fc=0, A=error code

 Register status on return:

 /IXIY same

 AFBCDEHL/.... different

Example:
 ld a,(mybank)

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_DEALLOC ; release bank

 rst RST_HOOK

 defb HOOK_PACKAGE

RESI_LOGO ($032b)

Displays any interface-specific graphical logo at the requested position on screen. If the

interface used by this version of ResiDOS does not have a logo (currently only ZXCF

interfaces use a logo), then this call returns an error of rc_notimp.

Available from: v2.00

 IN: C=screen line

 B=screen column

 OUT(s): Fc=1

 OUT(f): Fc=0, A=error code

 Register status on return:

 /IXIY same

 AFBCDEHL/.... different

Example:
 ld bc,$0800 ; line 0, column 8

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_LOGO ; display logo

 rst RST_HOOK

 defb HOOK_PACKAGE

ResiDOS Firmware Supplement

Page 75 of 140

RESI_MESSAGE ($032e)

This call allows you to obtain the text description of any ResiDOS/IDEDOS/ package error

obtained from a previous call. The text returned is the same as that which would be

generated by the RESI_REPORT call. The buffer you provide at DE must be at least 23

bytes long. If the error code in A is a package-specific error

(rc_pkg_error_0...rc_pkg_error_31) then you should also supply the package ID for the call

that produced the error in B. Messages obtained are terminated with bit 7 set in the last

character.

Available from: v2.00

 IN: A=error code

 B=package ID (only needed if A=rc_pkg_*)

 DE=address of 23-byte buffer

 OUT(s): Fc=1

 OUT(f): Fc=0, A=error code

 Register status on return:

 /IXIY same

 AFBCDEHL/.... different

Example:
 ld a,rc_notimp ; get text for "rc_notimp" error

 ld b,PKG_RESIDOS ; generated by ResiDOS package

 ; (not actually needed in this case)

 ld de,mybuffer

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_MESSAGE ; get message to DE

 rst RST_HOOK

 defb HOOK_PACKAGE

RESI_NMISVC ($0331)

This call is only for the use of packages which implement an NMI handler (ie have

PKGCAPS_NMI set in their package capabilities) and should only be called during

execution of their package_nmi call.

It allows any NMI handler to obtain the set of register values that were in force at the time

that the NMI button was pressed, and to change these before returning from the

package_nmi call. This allows the state of the Spectrum to be changed by the NMI handler

(Task Manager does this when switching tasks, for example).

The NMI register record obtained is held in the same format as the 30-byte header of v1.45

Z80 snapshot files (described here).

Available from: v2.00

 IN: B=reason code:

 nmisvc_getregs (0) to obtain NMI register record

 nmisvc_putregs (1) to update NMI register record

 HL=address of NMI register record

 OUT(s): Fc=1

 OUT(f): Fc=0, A=error code

http://www.worldofspectrum.org/faq/reference/z80format.htm

ResiDOS Firmware Supplement

Page 76 of 140

 Register status on return:

 /.... same

 AFBCDEHL/IXIY different

Example:
 ld b,nmisvc_getregs ; obtain NMI register record

 ld hl,z80hdrbuffer ; address of 30-byte buffer

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_NMISVC ; get record to HL

 call PACKAGE_CALL_PKG ; make the call from this package

RESI_BROADCASTEXP ($0334)

This call broadcasts an expansion call to all currently-installed packages (using their

package_exp call). Any parameters required can be passed in BC/DE/HL/IX and will be

preserved; return results from each package called are simply ignored.

Any reason code may be provided to this function; only packages which support the reason

code will be affected. Reason codes that are currently supported by one or more packages

are:

exp_boot Initialise package after power-cycle (no parameters).

exp_fs_setdrive Filesystem packages: set the current drive letter. B holds the

upper-case drive letter.

exp_fs_setuser Filesystem packages: set the current user area. B holds the user

area number (0-15).

exp_fs_snapdata Filesystem packages: get snapshot data. (Details to be

documented later.)

Note that none of the above reason codes should be broadcast by applications or other

packages - they are for internal ResiDOS use only. If you wish to add a new expansion call

reason code, please discuss it with me first.

Available from: v2.00

 IN: A=reason code

 BC/DE/HL/IX=parameters, dependent on reason code

 OUT(s): Fc=1

 Register status on return:

 ..BCDEHL/IXIY same

 AF....../.... different

Example:
 ld a,exp_boot ; initialise all packages

 ; DO NOT USE THIS REASON!

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_BROADCASTEXP ; broadcast to all packages

 rst RST_HOOK

 defb HOOK_PACKAGE

ResiDOS Firmware Supplement

Page 77 of 140

RESI_CONFIG ($0337)

This call accesses the ResiDOS configuration file, residos.cfg on the boot drive. It can be

used to read, write or delete any named entry.

NOTE: It is important that the buffers pointed to be DE and HL do not lie in the top 2K of

RAM. They must lie between $4000 and $f800.

Available from: v2.00

 IN: A=reason code:

 rc_config_getvalue (0), to read a numeric value

 rc_config_gettext (1), to read a text value

 rc_config_setvalue (2), to write a numeric value

 rc_config_settext (3), to write a text value

 rc_config_delete (4), to delete a value

 DE=address of setting name (lower-case, $ff-terminated)

 HL=numeric value, or address of text buffer

 OUT(s): Fc=1

 HL=numeric value (for rc_config_getvalue only)

 OUT(f): Fc=0, A=error code

 Register status on return:

 /IXIY same

 AFBCDEHL/.... different

Example:
 ld b,rc_config_setvalue ; set a numeric value

 ld hl,3 ; number to set

 ld de,configname ; address of setting name (lower-case, $ff-terminated)

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_CONFIG

 rst RST_HOOK

 defb HOOK_PACKAGE

RESI_CHANNELSVC ($033a)

This call provides services for packages that implement extended channels. Only packages

can provide channels (since the input/output handlers are always package calls) so

application programs should generally not use this call, although they may wish to use the

channelsvc_parseint* reasons for non-channel-related purposes.

The channelsvc_parseint* reasons are intended to allow a package to easily parse

parameters present in a channel specifier string. A default of zero is used if no integer is

found. Therefore, a string "A>,76" would provide values of 0 and 76 when parsed with a

channelsvc_parseint followed by a channelsvc_parseintcomma.

ResiDOS Firmware Supplement

Page 78 of 140

The channelsvc_create reason creates a channel in the CHANS area, updating all system

variables as appropriate. The layout of all ResiDOS-compatible channels is as follows (as

defined in packages.def):

 defw $0008 ; "output" routine (switch to ResiDOS)

 defw $0008 ; "input" routine (switch to ResiDOS)

 defb 'A' ; channel name (single uppercase letter)

 defw pkgout ; package call for output routine

 defw pkgin ; package call for input routine

 defw length ; total length of channel (11+size of user data)

 ...optional user data follows...

The channelsvc_delete reason deletes a channel, updating all system variables as

appropriate.

The channelsvc_grow and channelsvc_shrink reasons increase or decrease the size of a

channel, by adding or removing data from the end of the user data area. Channels may not

be shrunk to less than 11 bytes. Again, all system variables are kept up-to-date.

Available from: v2.12

 IN: A=reason code:

 channelsvc_parseint (0), to parse an integer from a string

 channelsvc_parseintmax (1), to parse an integer up to a maximum value from a

string

 channelsvc_parseintcomma (2), to parse an integer preceded by a comma from

a string

 channelsvc_parseintcommamax (3), to parse an integer up to a maximum

value, preceded by a comma, from a string

 channelsvc_create (4), to create a channel

 channelsvc_delete (5), to delete a channel

 channelsvc_grow (6), to increase the size of a channel

 channelsvc_shrink (7), to decrease the size of a channel

 For the channelsvc_parseint* calls:

 HL=address of string to parse

 BC=length of string to parse

 DE=maximum value allowable (*max versions only)

 For channelsvc_create:

 D=channel name (uppercase letter)

 Bit 7 may be used as a flag, and is ignored by ResiDOS

 E=package ID which handles this channel

 H=package call number for output to this channel

 L=package call number for input from this channel

 BC=total length of channel data (min 11 bytes if no user data)

 For channelsvc_delete:

 HL=address of channel

ResiDOS Firmware Supplement

Page 79 of 140

 For channelsvc_grow, channelsvc_shrink:

 HL=address of channel

 BC=number of bytes to grow or shrink channel by

 OUT(s): Fc=1

 For the channelsvc_parseint* calls:

 HL=address of string after integer

 BC=length of string after integer

 DE=value (defaults to zero if no integer found)

 For channelsvc_create:

 HL=address of channel

 DE=address of user data (ie DE=HL+chandata_userdata)

 OUT(f): Fc=0, A=error code

 Register status on return:

 /IXIY same

 AFBCDEHL/.... different

Example:
 ld a,channelsvc_create ; create a channel

 ld d,'X' ; channel name

 ld e,MYPKG_ID

 ld h,MYOUTCALL

 ld l,MYINCALL

 ld bc,11+4 ; "X" channel has 4 bytes of user data

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_CHANNELSVC

 call PACKAGE_CALL_PKG ; make the call from this package

RESI_STREAM_OPEN ($033d)

This call allows you to open a stream to any channel descriptor. This can be one of the

standard (S, P, or K) channels, or a new channel provided by ResiDOS or a package. This

call is directly equivalent to using the BASIC command OPEN #.

Note that, in common with the other RESI_STREAM_* calls, errors generated can be

ResiDOS/IDEDOS/package errors (as normally returned by other calls) or they may be a

BASIC error code (-1). You should check the zero flag to determine which type of error

has been returned. Typically, the only BASIC errors generated are likely to be "O Invalid

Stream" (Fz=1, A=$17) or "J Invalid I/O Device" (Fz=1, A=$12).

Available from: v2.14

 IN: A=stream (0..15)

 DE=address of string specifying channel to open

 BC=length of string specifying channel to open

 OUT(s): Fc=1

 OUT(f): Fc=0,

 Fz=0, A=ResiDOS/IDEDOS/package error code

 B=package id (for package error codes)

ResiDOS Firmware Supplement

Page 80 of 140

 Fz=1, A=BASIC error code - 1

 Register status on return:

 /..IY same

 AFBCDEHL/IX.. different

Example:
 ld a,4 ; stream 4

 ld de,msg_chan_start

 ld bc,msg_chan_end-msg_chan_start

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_STREAM_OPEN ; open stream to channel

 rst RST_HOOK

 defb HOOK_PACKAGE

.msg_chan_start

 defm "i>a:data.txt"

.msg_chan_end

RESI_STREAM_CLOSE ($0340)

This call closes a stream. If the stream is in the range 0..3, then it is re-attached to its

default channel. This call is directly equivalent to using the BASIC command CLOSE #.

Note that, in common with the other RESI_STREAM_* calls, errors generated can be

ResiDOS/IDEDOS/package errors (as normally returned by other calls) or they may be a

BASIC error code (-1). You should check the zero flag to determine which type of error

has been returned. Typically, the only BASIC errors generated are likely to be "O Invalid

Stream" (Fz=1, A=$17) or "J Invalid I/O Device" (Fz=1, A=$12).

Available from: v2.14

 IN: A=stream (0..15)

 OUT(s): Fc=1

 OUT(f): Fc=0,

 Fz=0, A=ResiDOS/IDEDOS/package error code

 B=package id (for package error codes)

 Fz=1, A=BASIC error code - 1

 Register status on return:

 /..IY same

 AFBCDEHL/IX.. different

Example:
 ld a,4 ; stream 4

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_STREAM_CLOSE ; close stream

 rst RST_HOOK

 defb HOOK_PACKAGE

ResiDOS Firmware Supplement

Page 81 of 140

RESI_STREAM_IN ($0343)

This call reads a single character from the currently active stream, if one is available. If

Fc=1 and Fz=1, a character was not available, but you can loop back and wait until Fc=1

and Fz=0. If the stream is permanently unable to provide a character (an end-of-file

condition, for example) then an error will be returned.

NOTE: If the current stream is open to one of the standard channels (K, S or P) then if an

error occurs, a BASIC error report may be generated, and no return made to the caller.

Note that, in common with the other RESI_STREAM_* calls, errors generated can be

ResiDOS/IDEDOS/package errors (as normally returned by other calls) or they may be a

BASIC error code (-1). You should check the zero flag to determine which type of error

has been returned. Typically, the only BASIC errors generated are likely to be "O Invalid

Stream" (Fz=1, A=$17) or "J Invalid I/O Device" (Fz=1, A=$12).

Available from: v2.14

 IN: -

 OUT(s): Fc=1,

 Fz=0, A=character

 Fz=1, character not currently available

 (this is not an EOF condition)

 OUT(f): Fc=0,

 Fz=0, A=ResiDOS/IDEDOS/package error code

 B=package id (for package error codes)

 Fz=1, A=BASIC error code - 1

 Register status on return:

 /..IY same

 AFBCDEHL/IX.. different

Example:
 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_STREAM_IN ; read from stream

 rst RST_HOOK

 defb HOOK_PACKAGE

RESI_STREAM_OUT ($0346)

This call writes a single character to the currently active stream.

NOTE: If the current stream is open to one of the standard channels (K, S or P) then if an

error occurs, a BASIC error report may be generated, and no return made to the caller.

Note that, in common with the other RESI_STREAM_* calls, errors generated can be

ResiDOS/IDEDOS/package errors (as normally returned by other calls) or they may be a

BASIC error code (-1). You should check the zero flag to determine which type of error

has been returned. Typically, the only BASIC errors generated are likely to be "O Invalid

Stream" (Fz=1, A=$17) or "J Invalid I/O Device" (Fz=1, A=$12).

ResiDOS Firmware Supplement

Page 82 of 140

Available from: v2.14

 IN: A=character

 OUT(s): Fc=1

 OUT(f): Fc=0,

 Fz=0, A=ResiDOS/IDEDOS/package error code

 B=package id (for package error codes)

 Fz=1, A=BASIC error code - 1

 Register status on return:

 /..IY same

 AFBCDEHL/IX.. different

Example:
 ld a,'*'

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_STREAM_OUT ; write '*' to stream

 rst RST_HOOK

 defb HOOK_PACKAGE

RESI_STREAM_PTR ($0349)

This call gets or sets the read/write pointer or size of the currently active stream. If the

current stream does not support the requested operation, then the BASIC error code "J

Invalid I/O Device" (Fc=0, Fz=1, A=$12) will be returned.

Note that, in common with the other RESI_STREAM_* calls, errors generated can be

ResiDOS/IDEDOS/package errors (as normally returned by other calls) or they may be a

BASIC error code (-1). You should check the zero flag to determine which type of error

has been returned. Typically, the only BASIC errors generated are likely to be "O Invalid

Stream" (Fz=1, A=$17) or "J Invalid I/O Device" (Fz=1, A=$12).

Available from: v2.14

 IN: A=reason code:

 streamptr_getptr (0), to obtain the current stream pointer

 streamptr_setptr (1), to change the current stream pointer

 streamptr_extent (2), to obtain the current stream size

 For streamptr_setptr:

 DEBC=pointer

 OUT(s): Fc=1

 For streamptr_getptr:

 DEBC=pointer

 For streamptr_extent:

 DEBC=size

ResiDOS Firmware Supplement

Page 83 of 140

 OUT(f): Fc=0,

 Fz=0, A=ResiDOS/IDEDOS/package error code

 B=package id (for package error codes)

 Fz=1, A=BASIC error code - 1

 Register status on return:

 /..IY same

 AFBCDEHL/IX.. different

Example:
 ld a,streamptr_getptr

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_STREAM_PTR ; get the current stream pointer

 rst RST_HOOK

 defb HOOK_PACKAGE

RESI_STREAM_SELECT ($034c)

This call sets the current stream. This is the stream that all input and output (via BASIC

commands and RST $10 as well as through the other RESI_STREAM_* calls) will be sent

through.

Note that, in common with the other RESI_STREAM_* calls, errors generated can be

ResiDOS/IDEDOS/package errors (as normally returned by other calls) or they may be a

BASIC error code (-1). You should check the zero flag to determine which type of error

has been returned. Typically, the only BASIC errors generated are likely to be "O Invalid

Stream" (Fz=1, A=$17) or "J Invalid I/O Device" (Fz=1, A=$12).

Available from: v2.14

 IN: A=stream (0..15)

 OUT(s): Fc=1

 OUT(f): Fc=0,

 Fz=0, A=ResiDOS/IDEDOS/package error code

 B=package id (for package error codes)

 Fz=1, A=BASIC error code - 1

 Register status on return:

 /IXIY same

 AFBCDEHL/.... different

Example:
 ld a,4

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_STREAM_SELECT ; set the current stream to #4

 rst RST_HOOK

 defb HOOK_PACKAGE

ResiDOS Firmware Supplement

Page 84 of 140

RESI_COMMAND ($034f)

This powerful call allows the machine-code programmer to perform any ResiDOS BASIC

command or function (including any supplied by installed packages). On entry, HL

contains a command/function handler ID for the required BASIC command or function.

These IDs are documented separately for ResiDOS and (optionally) for each package

supplying commands and functions.

For functions, the BASIC floating-point stack should contain all the input values required

by the function (with the final function parameter being topmost on the floating-point

stack). When the function completes, the topmost value on the floating-point stack is the

result of the function (if any); all inputs to the function will have been consumed.

For commands, IX should point to a 32-byte buffer containing input parameters for the

command (as documented separately for each command). IY should point to the system

variable ERR_NR ($5c3a), and this should contain an 8-bit field of command options (as

documented separately for each command). Finally, some commands may also require

parameters to be loaded on the BASIC floating-point stack (although this is not usual -

none of the built-in ResiDOS commands do this). Again, this requirement is documented

separately for each command.

If the command or function fails for any reason, a BASIC error report is not generated, but

the error status is returned to the caller. If desired, the caller can then generate the BASIC

error using the RESI_REPORT call.

Note that this call is not intended to replace the finer control that machine-code programs

can obtain by calling lower-level +3DOS, IDEDOS, ResiDOS or package calls, but it can

be useful to access functionality that isn't readily exposed except through BASIC

commands.

NOTE: Packages may execute commands or functions provided by ResiDOS or other

packages, but not from within a command or function handler.

Available from: v2.19

 IN: HL=command/function handler ID

 floating-point stack: as required by command/function

 IX=address of 32-byte parameter buffer (commands only)

 IY=ERR_NR ($5c3a)

 (IY+0)=command option flags (commands only)

 OUT(s): Fc=1

 floating-point stack: contains result (functions only)

 OUT(f): Fc=0,

 Fz=0, A=ResiDOS/IDEDOS/package error code

 B=package id (for package error codes)

 Fz=1, A=BASIC error code - 1

 Register status on return:

 /..IY same

 AFBCDEHL/IX.. different

ResiDOS Firmware Supplement

Page 85 of 140

Example:
 ld ix,parambuffer

 ; don't need to set string address,

 ; as length is zero

 ld (ix+2),0 ; string length 0 (low byte)

 ld (ix+3),0 ; string length 0 (high byte)

 ld (ix+4),2 ; stream 2

 ld (iy+0),$80 ; option 7 ("+", expanded catalog)

 ld hl,HANDLERID_CAT ; CAT command handler

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_COMMAND ; execute command: CAT+ #2;""

 ; (ie same as just CAT+)

 rst RST_HOOK

 defb HOOK_PACKAGE

...

 ld (iy+0),$ff ; remember to reset ERR_NR before

... ; returning to BASIC (also restore H'L')

.parambuffer

 defs 32

RESI_IM1SVC ($0352)

This call is only for the use of packages. By calling this function, a package can register

itself to be called whenever an interrupt occurs. When this happens, the package will

continue to receive a call to their standard _EXP call with a reason of A=exp_im1. At this

point they can perform any operations they like, although it is desirable to keep processing

to a minimum. The package must preserve the BCDEHLIXIY registers.

Packages may register or de-register a handler at any time. The interrupt chain is preserved

across resets and power cycles. Therefore, packages which enable/ disable interrupt

handlers in response to commands or other events may wish to ensure that they deregister

their interrupt handler at boot (when EXP_BOOT is supplied to their _EXP call), in case a

power cycle/reset occurred when one was still active. It is also important to remember to

de-register your package's interrupt handler before allowing it to be uninstalled (ie when

your _BYE call is invoked).

Available from: v2.20

 IN: A=reason code:

 im1svc_reg (0) to register the IM1 handler for this package

 im1svc_dereg (1) to de-register the IM1 handler for this package

 OUT(s): Fc=1

 OUT(f): Fc=0, A=error code

 Register status on return:

 /IXIY same

 AFBCDEHL/.... different

Example:
 ld a,im1svc_reg ; register interrupt handler

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_IM1SVC

 call PACKAGE_CALL_PKG ; make the call from this package

ResiDOS Firmware Supplement

Page 86 of 140

RESI_TEMPSVC ($0355)

ResiDOS contains an internal 2K temporary buffer, which it uses to hold data from main

memory when performing a memory-intensive operation. The buffer is used during the

%CP and CAT BASIC commands, and also during configuration file processing

operations. At other times, the buffer is available for the use of a package to save and

restore data to.

This call is only for the use of packages, and may not be used during an NMI or IM1

interrupt. Filesystem packages should also not use this call at times when they are likely to

be called by the ResiDOS config processing or %CP or CAT commands.

Typically, a package can use this buffer during processing of a BASIC command or other

call that it is implementing. On return to the caller, it should always release the temp buffer

so that it can be used for other purposes again.

To use the buffer, a package must first lock it using the tempsvc_lock reason. This may fail

(with rc_resi_no_room) if the temp buffer is locked by another package. Once locked, the

package may issue any number of calls with tempsvc_save and tempsvc_restore to save

and restore data in the temp buffer. It is up to the package to manage the 2K area as

desired. Finally, the package must unlock the buffer with the tempsvc_unlock reason.

Available from: v2.21

 IN: A=reason code:

 tempsvc_lock (0) to lock the temp buffer for this package

 tempsvc_unlock (1) to unlock the temp buffer

 tempsvc_save (2) to save data to the temp buffer

 tempsvc_restore (3) to restore data from the temp buffer

 For tempsvc_save & tempsvc_restore:

 HL=offset into 2K temporary buffer (0...2047)

 DE=memory address to save/restore from

 BC=size to save/restore

 OUT(s): Fc=1

 OUT(f): Fc=0, A=error code

 Register status on return:

 /IXIY same

 AFBCDEHL/.... different

ResiDOS Firmware Supplement

Page 87 of 140

Example:
 ld a,tempsvc_lock ; lock the temp buffer

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_TEMPSVC

 call PACKAGE_CALL_PKG ; make the call from this package

 jr nc,handle_errors

 ld a,tempsvc_save ; save data to temp buffer

 ld hl,0 ; use offset 0 (start of buffer)

 ld de,$c000 ; save from $c000

 ld bc,1024 ; 1K to save

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_TEMPSVC

 call PACKAGE_CALL_PKG ; make the call from this package

 jr nc,handle_errors

 ld a,tempsvc_restore ; restore data from temp buffer

 ld hl,0 ; use offset 0 (start of buffer)

 ld de,$c000 ; restore to $c000

 ld bc,1024 ; 1K to restore

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_TEMPSVC

 call PACKAGE_CALL_PKG ; make the call from this package

 jr nc,handle_errors

 ld a,tempsvc_unlock ; unlock the temp buffer

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_TEMPSVC

 call PACKAGE_CALL_PKG ; make the call from this package

 jr nc,handle_errors

RESI_STREAM_LINEIN ($0358)

This call reads characters from the currently active stream into a buffer until a CR (ASCII

13) character is received. The CR is not added to the buffer (nor is any other terminator).

The return values provide the size of the input data returned and the address following the

last data byte (so that the user can easily append a terminator if required).

If the buffer is filled before a CR is received, this call will continue to poll the stream and

discard all further characters until a CR is obtained.

This call differs from manually calling RESI_STREAM_IN until a CR is received. Some

channels provide a special routine for line input, and this will only be invoked by

RESI_STREAM_LINEIN, not by RESI_STREAM_IN. For example, window channels

will provide an on-screen user prompt where a line can be typed and edited before ENTER

is pressed and the result returned. Using RESI_STREAM_IN would only use the character

input routine, which provides no on-screen feedback for window channels.

New channels which provide only character input can still be accessed using this routine,

which gives a convenient way of obtaining an entire line of input at once. However, the

standard channels (of which only "K" allows input) may not be accessed with this routine -

use RESI_STREAM_IN instead for this case.

ResiDOS Firmware Supplement

Page 88 of 140

Note that, in common with the other RESI_STREAM_* calls, errors generated can be

ResiDOS/IDEDOS/package errors (as normally returned by other calls) or they may be a

BASIC error code (-1). You should check the zero flag to determine which type of error

has been returned. Typically, the only BASIC errors generated are likely to be "O Invalid

Stream" (Fz=1, A=$17) or "J Invalid I/O Device" (Fz=1, A=$12).

Available from: v2.23

 IN: HL=buffer address

 BC=buffer size

 OUT(s): Fc=1,

 HL=address in buffer following input data

 BC=number of characters received

 OUT(f): Fc=0,

 Fz=0, A=ResiDOS/IDEDOS/package error code

 B=package id (for package error codes)

 Fz=1, A=BASIC error code - 1

 Register status on return:

 /..IY same

 AFBCDEHL/IX.. different

Example:
 ld hl,buffer

 ld bc,bufsize

 exx

 ld b,PKG_RESIDOS

 ld hl,RESI_STREAM_LINEIN ; read line from stream

 rst RST_HOOK

ResiDOS Firmware Supplement

Page 89 of 140

The IDEDOS Package

This package provides many of the calls available in +3DOS (used on the +3 and +3e) and

IDEDOS (used on the +3e). The calls all use the same input and output parameters, but

there are some "gotchas":

 128K memory configurations are not supported. You should always specify 0 for

the page number in calls which expect it.

 Some calls return addresses "in page 7" (such as DOS_REF_HEAD). Data at these

addresses cannot be accessed directly, since it is not in main memory. Instead, you

must use the IDE_ACCESS_DATA call, detailed later.

+3DOS Calls

The following +3DOS calls may be used. Full details are in the +3 manual, which can be

obtained from The World Of Spectrum. Calls marked with an asterisk probably won't work

as expected, or be very useful.

 DOS_INITIALISE

 DOS_VERSION

 DOS_OPEN

 DOS_CLOSE

 DOS_ABANDON

 DOS_REF_HEAD

 DOS_READ

 DOS_WRITE

 DOS_BYTE_READ

 DOS_BYTE_WRITE

 DOS_CATALOG

 DOS_FREE_SPACE

 DOS_DELETE

 DOS_RENAME

 DOS_BOOT *

 DOS_SET_DRIVE

 DOS_SET_USER

 DOS_GET_POSITION

 DOS_SET_POSITION

 DOS_GET_EOF

 DOS_GET_1346 *

 DOS_SET_1346 *

 DOS_FLUSH

 DOS_SET_ACCESS

 DOS_SET_ATTRIBUTES

 DOS_OPEN_DRIVE

 DOS_SET_MESSAGE

 DOS_REF_XDPB

 DOS_MAP_B *

 DD_SET_RETRY

 DD_SEL_FORMAT *

ResiDOS Firmware Supplement

Page 90 of 140

 DD_ENCODE

 DD_L_XDPB *

 DD_L_DPB *

IDEDOS Calls

The following IDEDOS calls are provided. Documentation is provided at the +3e website.

 IDE_VERSION

 IDE_INTERFACE

 IDE_INIT

 IDE_DRIVE

 IDE_SECTOR_READ

 IDE_SECTOR_WRITE

 IDE_FORMAT

 IDE_PARTITION_FIND

 IDE_PARTITION_NEW

 IDE_PARTITION_INIT

 IDE_PARTITION_ERASE

 IDE_PARTITION_RENAME

 IDE_PARTITION_READ

 IDE_PARTITION_WRITE

 IDE_PARTITION_WINFO

 IDE_PARTITION_OPEN

 IDE_PARTITION_CLOSE

 IDE_PARTITION_GETINFO

 IDE_PARTITION_SETINFO

 IDE_SWAP_OPEN

 IDE_SWAP_CLOSE

 IDE_SWAP_OUT

 IDE_SWAP_IN

 IDE_SWAP_EX

 IDE_SWAP_POS

 IDE_SWAP_MOVE

 IDE_SWAP_RESIZE

 IDE_DOS_MAP

 IDE_DOS_UNMAP

 IDE_DOS_MAPPING

 IDE_DOS_UNPERMANENT

 IDE_SNAPLOAD

 IDE_ACCESS_DATA

 IDE_IDENTIFY

 IDE_PARTITIONS

One slight difference is that for the IDE_DOS_MAP and IDE_DOS_UNMAP calls, the

FLAGS3 variable is not used (it doesn't exist on all Spectrums). Instead, you can provide a

drive letter as lower-case to make the mapping permanent.

A special call, IDE_ACCESS_DATA, is provided so that data which exists in the ResiDOS

memory can be read or written by programs. Such addresses are referred to in the +3DOS

ResiDOS Firmware Supplement

Page 91 of 140

documentation as being "in page 7". Instead, use this call, with the provided address as the

source or destination, and your own buffer as the other address.

ResiDOS Firmware Supplement

Page 92 of 140

+DivIDE Firmware

for

ZX Spectrum DivIDE Interface

© Rudy Biesma

USER MANUAL

Version released for RWAP Software DivIDE Plus Interface

Manual Update 1 (February 2007)

+DivIDE Firmware Supplement

Page 94 of 140

NOTICE

The manual for +DivIDE is based on the manual for the PlusD disk interface made

available to the public following the cessation of Miles Gordon Technology.

The manual is intended to provide the user with detailed information adequate for the

efficient installation and operation of the equipment involved. However, while every effort

has been taken to ensure accuracy, the manufacturer assumes no liability resulting from

errors or omissions in this manual, or from the use of the information contained herein.

Introduction

The +DivIDE firmware produced for the DivIDE interface is based on the G+DOS

firmware first devised by Miles Gordon Technology for their ZX Spectrum Disciple and

Plus D floppy disk interfaces and contains various improvements to remove bugs, as well

as implement the firmware for use with hard disks and compact flash memory.

In order to make the manual easier to understand, where a number is expected, you will see

(n) or similar – this is to distinguish from where the letter itself should be used. Letters are

not case sensitive, therefore for example:

LOAD d(n) can be LOAD D1 or LOAD d2

Where we refer to an IDE device this can be a hard disk, FlashIDE or Compact Flash

memory card connected to the DivIDE Plus interface using an IDE cable or Compact Flash

adaptor.

Compatibility

+DivIDE should work with all DISCiPLE and +D software which doesn't call routines in

G+DOS directly. At the moment it is not 128K mode compatible - it does work in 48K

mode on an original 128K.

SATA hard disk drives, CD and DVD drives are not supported. Maximum drive size is

50GB.

+DivIDE Firmware Supplement

Page 95 of 140

How to Access IDE Devices

In order to retain compatibility with G+DOS, +DivIDE uses virtual disks of 1600 sectors

each on the IDE device.

You have to identify which virtual disk is to be used by the G+DOS disk access commands

(such as LOAD D1 “test” or CAT 1). In order to do this, you need to use the GOTO *

command.

GOTO *(d);(m),(n)

Where:

d is the disk access number (1 or 2 at present),

m is the IDE device number (0 for Master, 1 for a slave drive)

n is the number of the virtual disk on that IDE device (0-65535)

With a fixed 1600 sectors per virtual disk, this means that +DivIDE can handle a

maximum of 1600x65535 sectors on a hard disk. With each sector being 512 bytes, this

gives a maximum disk size of 50GB that can be accessed.

Each virtual disk can be a maximum of 800K as per the original G+DOS allocation

scheme, with the first 10K set aside for the virtual disk catalogue. The catalogue (or

directory) of a virtual disk can be viewed using the command:

CAT (d)

This also means that there is still a maximum of 80 files on each virtual disk.

+DivIDE Firmware Supplement

Page 96 of 140

The Catalogue (or file directory)

Type CAT 1 (or CAT 2 if you wish to access drive 2) - ENTER. Please note that these are

the virtual drives identified previously with the GOTO * command.

In about two seconds the screen will display:

 - The heading +DivIDE Disk 1 (or 2) Catalogue.

 - A list of the files on the disk with various comments (The maximum number of files per

disk is 80).

 - The amount of free space on the disk in kilobytes.

A typical catalogue screen looks like this:

 1 +SYSTEM 14 CDE 8192,5656

 2 CONFIG 31 BAS 9100

 3 CONFIG1_C 4 CDE 40300,1750

 4 CONFIG2_C 14 CDE 42240,6656

 5 CONFIG3_C 1 CDE 49000,60

 6 snap F 97 SNP 48K

 7 screen 14 SCREEN$

 8 listing 34 M/DRIVE

 9 data 8 SPECIAL

 10 numeric 4 D.ARRAY

 11 character 5 $.ARRAY

 Number of free K-bytes = 667

Most of the information on this catalogue screen is automatically displayed by +DivIDE.

The only information which you have to supply is the file-name, which is shown in the

second column. These file-names can be up to ten characters long, in upper case or lower

case characters, or both.

The first column on the left shows the program number. Whenever you save a file,

+DivIDE will give it the first available program number. So, if you have the catalogue

shown in the example above, the next file you save will automatically become program

number 12. This program number will stay the same until the file is erased (we do not list

files in alphabetical order). But if you erased, say, program number 8, then the next file you

save to the disk will become the new program number 8 – taking the first available

program number.

The third column shows the number of disk sectors used. Each sector holds 512 bytes (= ½

kilobyte), so to find out the number of kilobytes used for each file, divide the number in the

third column by 2.

The fourth column is for the type of file, which +DivIDE automatically selects. The

different types are shown in the table at the top of page 7. You probably won't fully

understand the significance of all these different types of file yet, but most of them are

covered in this Introductory Manual. Those marked with an asterisk are likely to be used

+DivIDE Firmware Supplement

Page 97 of 140

by more experienced programmers and demand a fuller explanation than we can give in

this Manual.

 BAS = Basic

 CDE = Code

 SNP 48K = 48K Snapshot File

 SNP128K = 128K Snapshot File

 SCREEN$ = Screen File

 M/DRIVE = Microdrive File *

 SPECIAL = Special File *

 D.ARRAY = Data Array

 $.ARRAY = Character Array

 OPENTYP = File created by OPEN # statement *

 EXECUTE = Execute File *

+DivIDE File-Types

The right-hand column in the catalogue tells you the starting address of the file, and, after

the comma, the number of bytes used if it is a code file. If it is a file in BASIC, the number

will show the line at which the program starts.

The amount of free space left on the disk is displayed in kilobytes at the bottom of the

screen.

Remember that +DivIDE displays all this information automatically. All you'll have to do

is to select a name for each file - and we'll explain how to do this later.

If your catalogue fills the screen, and you wish to scroll down to the next screen, press

ENTER.

You can also display an abbreviated catalogue by typing CAT 1! (or CAT 2!). This would

show the same catalogue in this format:

 +SYSTEM CONFIG CONFIG1_C CONFIG2_C

 CONFIG3_C snap F screen listing

 data numeric character

Both the full and the abbreviated catalogue can be listed on screen simultaneously. Or you

could, for example, list disk 1 in full and disk 2 in the abbreviated form (but you must list

the full catalogue first, as CAT 1 clears the screen, while CAT 1! does not)

If you wish to print out the catalogue on your printer, you can use the special CAT #3

command. For example, to send the catalogue on drive 1 to the printer, you enter:

 CAT #3;1

To print an abbreviated catalogue from drive 2, you enter:

 CAT #3;2!

+DivIDE Firmware Supplement

Page 98 of 140

+DivIDE Disk Drive Commands

When you use DivIDE Plus and a disk drive, BASIC commands typed on the computer

keyboard are followed by a Syntax Operator – a code to let the computer know that the

instructions are directed toward the disk drive, and not, for example, to a tape recorder.

For ease of explanation in this Manual, the syntax operator will always be referred to as Dl,

meaning that the instruction is for drive number 1. However, when you are working on the

computer, the following options are also available:

 Dl or dl = a command for drive 1

 D2 or d2 = a command for drive 2

 D* or d* = a command for the last drive in use

(Programmers should note that D* is particularly useful when your disk file autoruns and

calls up another file on the same drive. Also note that a variable can be assigned for drive

number 1 or 2 but not for *.)

By typing an upper case D rather than a lower case d when saving a file, the abbreviated

disk catalogue will be displayed automatically when the save is complete. A new catalogue

also appears automatically if you type an upper case D when erasing or renaming a file.

Saving a File and Verifying

First, type in this short program called "Squares". We'll use this program to show

+DivIDE's various disk operations:

 10 REM Squares

 20 FOR n=1 TO 10

 30 PRINT n,n*n

 40 NEXT n

Then, to save the program on the disk in drive 1, ENTER:

 SAVE Dl "Squares"

The screen border will flash (this can be configured), and after about 2 seconds the

program will be saved.

As described in the last section, if you have saved using a capital D, the abbreviated disk

catalogue is automatically displayed. You'll see the program Squares shown on the

catalogue as the last entry. But if you wish, you can do a further check to ensure that the

program has been correctly saved, by entering:

 VERIFY Dl "Squares"

When the O.K. message confirms the save, clear Squares from the computer's memory by

entering NEW.

+DivIDE Firmware Supplement

Page 99 of 140

Loading a Program

Now you can reload Squares from the disk, by entering

 LOAD Dl "Squares"

When the O.K. message appears, the program has been loaded, But so far we haven't given

an instruction to make the program run. Let's do that now by entering:

 SAVE Dl "Squares" LINE 10

But of course, there's already a program called Squares saved on the disk. +DivIDE tells

you this and asks you whether you wish to overwrite the existing file by entering Y (= Yes)

or N (= No)

Enter Y. Then:

 LOAD Dl "Squares"

Breaking into a Program

To break into the program and stop Squares running, use the normal Spectrum BREAK

key.

Note that BREAK will stop the computer running all normal routines, but it will have no

effect during a disk read/write (i.e. Load or Save) operation until the disk activity has been

completed.

Renaming a File

To rename a file, we use the two keywords ERASE and TO. For example, let's rename the

Squares file as Example 1:

 ERASE Dl "Squares" TO "Example 1"

The abbreviated catalogue will confirm that the change has been made.

The file-names you choose can be any combination of letters and numbers - or even spaces

- but the maximum number of characters is ten. You can use upper-case or lower-case

characters, or both. In the catalogue, the file-names will appear exactly as you originally

typed them, but when you re-load a file it doesn't matter if letters originally typed in lower

case are changed to upper case, or vice versa.

Warning: Don't use the characters ? or * in your file-names, as this may cause problems

with other commands we deal with later.

+DivIDE Firmware Supplement

Page 100 of 140

Merging a Program

If you wish to merge a file on disk with the program currently in memory you can do this

using the command:

 MERGE Dl "Squares2"

Please note that any line numbers in the merged program which already exist, will be

overwritten by those from the disk.

Erasing a File

Let's now erase the file called Example 1, by entering:

 ERASE Dl "Example 1"

After the erase, your abbreviated catalogue will confirm that Example 1 is no longer there.

Enter CAT 1 for the full listing, and you'll see that more space has been made free on the

disk (although this is such a small program that any change will be minimal!)

(Note that unlike the ZX Interface 1, +DivIDE returns an error message if you try to erase a

non-existent file. When using programs originally written for Microdrive, you may

sometimes need to delete ERASE commands in the listing to avoid the error message when

the program is running.)

Creating an Autoload File

An autoload file is one which loads as soon as you connect the interface and enter the

command RUN. You are allowed one autoload file per virtual disk.

For an illustration of an autoload file, let's rename the file Newcopy. Enter:

 ERASE Dl "Newcopy" TO "Autoload"

When the catalogue confirms that the change has been made, turn off the power to your

Spectrum so that you lose everything in the computer's memory. (Turn off the power -

don't use the Spectrum's reset button - we're coming to this in the next section.)

Turn on the power again and enter the command RUN. Your Autoload program (which,

you'll remember, is the original Squares program) will be loaded at the same time, and

instead of the normal +DivIDE title screen, you'll see the Squares program running.

+DivIDE Firmware Supplement

Page 101 of 140

+DivIDE Firmware Supplement

Page 102 of 140

Snapshot Files

For many +DivIDE users, one of the most important features will be the interface's ability

to transfer virtually any piece of Spectrum software to disk easily and instantly by means of

the Snapshot (NMI) Button. You can take Snapshot saves at any time during a program and

as often as you like; if you are a games-player, you'll find it especially valuable to be able

to:

- start a game at an advanced level instead of at the beginning

- come back to a game on another occasion and start at exactly the point where you had to

leave it last time

- keep a permanent record of your high scores.

A Snapshot save is made when you press the Snapshot (NMI) Button on the DivIDE Plus

once. Anything and everything held in the Spectrum's memory at that time is saved to the

last drive in use, shown by the indicator light on the disk drive.

But there are three different types of Snapshot file.

To experiment, first make sure that your system has been booted up. then load in any

program (a game is best for demonstration) in the normal way - from disk or from cassette.

(If you're loading from cassette, you should of course use the Spectrum's normal LOAD ""

command, and not the special +DivIDE disk syntax.)

When the program has loaded and started to run, press the Snapshot (NMI) Button. You'll

notice that your program will be frozen at its current status, and you will see a number of

multi-coloured lines filling the borders on the screen. You now have three Snapshot save

options:

Press key 3 on the Spectrum to save only the current SCREEN. A screen save will

occupy 7K of memory space on a disk. When the save is complete, you'll see that the

program will continue at the same point from which you left it.

Press key 4 on the Spectrum for a 48K PROGRAM to be saved to disk. Every time you

save a 48K program, 48K of memory space (or actually 97 sectors) will be used on the

disk. When the save is complete, in just over 3 seconds, the program will continue from the

point at which you left it. If you want to, you can take more Snapshots at later points in the

program until your disk is full - that's up to 16 Snapshots per disk on a 780K capacity

drive.

Press key 5 on the Spectrum for a 128K PROGRAM to be saved to disk. Every time

you save a 128K program, 128K of space will be used on the disk (= 256 sectors). The

procedure here is slightly different. The save will commence (and if you have kept flashing

borders in your system file, you'll see the borders flashing), but then the program will

appear to be frozen again.' If the picture on your screen (the picture - not the border) has

changed, press key Y (= Yes) on the Spectrum: if it has not, press key N. The 128K save

will then be complete in about 10 seconds and the program will resume from the point at

which you left it.

+DivIDE Firmware Supplement

Page 103 of 140

If you have loaded the program on drive 1, but wish to save your snapshot file to drive 2 -

or vice versa - press the CAPS SHIFT key on the Spectrum at the same time as pressing

key 3, 4, or 5.

If you hit the Snapshot (NMI) Button accidentally, and wish to return immediately to your

program, press key X on the Spectrum.

When you've saved a Snapshot file, press the computer reset button once (or in the case of

Spectrums without reset buttons, turn off the power, then turn it back on again and reboot

the DivIDE Plus system). Then call up the catalogue - enter CAT 1.

You'll see that your Snapshot file has been automatically labelled "Snap A/B/C" etc. with

the letter of the alphabet dependent upon the file's position in the catalogue. Clearly, it

would be difficult to remember the precise contents of your snapshot file if this were the

only name possible. So you'll need to give your Snapshot file an identifiable file-name.

First choose a new name for the file you have snapshotted and then rename it using the

ERASE....TO keywords.

Then, to reload Snapshot files, you enter:

 LOAD Dl "Your new file-name" S (for a 48K file)

 LOAD Dl "Your new file-name" K (for a 128K file)

 LOAD Dl "Your new file-name" SCREEN$ (for a screen file)

NOTE: Without the S, K and SCREEN$ identifiers, the Snapshot files will not load -

unless you use the special abbreviated syntax.

Problems?

1. I've found lots of programs I can't snapshot.

We can't guarantee 100% success with snapshotting, but we're pretty close. If you're getting

failure with several of your programs, there's probably a problem with your equipment. If

you find that you can only snapshot a small number of programs per disk, this strongly

suggests a problem with the heads on your disk drive.

2. I can't copy my Snapshot files using MOVE....TO.

Quite right - this is a security precaution against Illegal professional copying of commercial

software.

Abbreviated syntax

Now that you've learnt the basic disk drive commands, we can introduce you to a much

easier way of loading a file, You can just enter:

 LOAD 6

Or LOAD p6

This has the effect of loading the file labelled number 6 in the catalogue. If you use this

command you don't need to worry about the S, K or SCREEN$ identifiers to load snapshot

+DivIDE Firmware Supplement

Page 104 of 140

files. It also makes it much easier to load code files. Normally, you would have to type, for

example:

 LOAD Dl "CONFIG1_C" CODE 40300,1750

stating the start address of the file and the number of bytes used.

Instead, you can now simply enter

LOAD 3. Try it.

MERGE and VERIFY can also be used with the program number in this way - but ERASE

cannot.

Wild-Card Files

Wild-card files allow you to CATalogue, copy (using SAVE...TO) or ERASE a group of

similar files in a single operation. Let us imagine, for example, that you have a series of

files called:

 numbers1, numbers2, numbers3, numbers4

To erase all of them you can enter:

 ERASE Dl "n*"

The effect of the star is to say that all the rest of the file-name doesn't matter: you wish to

erase all files commencing with "n". Be careful: this really means all files beginning with

"n".

You could also enter:

 ERASE Dl "??mb*"

You would then erase all the files which have "-mb-" as their third and fourth letters. The

effect of each question-mark is to say that "this letter is of no significance".

Formatting New Virtual Disks

Before a virtual disk is used for the first time, it must be formatted. You can also format a

previously-used virtual disk: the effect will be to wipe the virtual disk clean of information.

You must therefore be careful not to format a disk which contains any files you may wish

to keep (and let's say it again - ALWAYS make back-up disks for important files!). It is

also risky to format a disk while you are holding a program in the Spectrum's memory, in

case the program is overwritten with format information.

To format disks. enter:

 FORMAT Dl

+DivIDE Firmware Supplement

Page 105 of 140

ERROR REPORTS

There are a number of standard Spectrum error messages which will appear on screen if the

command you have typed in cannot be obeyed. For full details, consult the Spectrum

manual. When you are using +DivIDE, these standard error messages will continue to

appear, but there are some additional error reports which refer specifically to disk handling

problems. These are some of the more important you may meet.

Nonsense in Basic

This is a standard Spectrum error report, and if it appears as soon as you start trying to use

+DivIDE, it suggests that the connection between the computer and the DivIDE Plus is not

being properly made, so the special DivIDE Plus commands cannot be recognised, Or it

may mean that you have typed a command incorrectly - try again.

Format Data Lost

This means that the disk has been damaged or the file has been corrupted - perhaps you've

been working too close to a magnetic field. You won't be able to access the current file,

and other files may also have been lost.

Copy any remaining files to another disk immediately. Try reformatting the original disk,

and if there's no permanent damage, you may be able to use it again, But don't risk storing

important files on this disk.

Sector Error

This means that the information you've tried to save has been corrupted. You'll need to

rewrite the file and save it again. But your disk has not been damaged and need not be

reformatted.

The numbers after the error message tell you which track and which sector have been

corrupted, You should always make a back-up copy of key files.

If the Sector Error or Format Data Lost messages appear regularly, you may have a

problem with your disk drive. The bead may be dirty, or the drive may not be centring the

disks correctly on insertion. Try cleaning the heads. If this fails, repairs may be necessary.

Disk Write Protected

You cannot save, erase, or otherwise modify files on this disk until you uncover the

security lock on the disk. (Use the security lock on the disk to keep important files safe.)

File Not Found

You are trying to load, copy, verify, erase or rename a file which is not present on the disk.

Check that you have typed in the file-name correctly. Make sure that you have used the file

identifier - S, K or SCREEN$ - if necessary.

+DivIDE Firmware Supplement

Page 106 of 140

ADVANCED DISK OPERATIONS

Sector by Sector Copying - Two Drives

 FORMAT Dl TO 2

- formats virtual disk 1 (and thus wipes it clean of data) and copies the contents of the

virtual disk 2 to virtual disk 1, sector by sector. BE VERY CAREFUL NOT TO FORMAT

THE WRONG DISK.

Because the copying is done a sector at a time, the copying process takes much longer than

the MOVE...TO command; but the FORMAT.. TO command will give you a disk which is

identical in every respect to the one which has been copied - useful if you are investigating

corrupt sectors.

Reading and Writing to a Sector

 LOAD @ D,T,S,Address

 SAVE @ D,T,S,Address

These commands are used for reading from or writing to a specified track and sector on the

disk to a memory location in the Spectrum memory area, where:

 D = the drive number (type either 1 or 2 - not the D)

 T = the track number from 0 to 39 (40 track) or from 0 to 79 (80 track)

 To read the second side on a double-sided disk drive use 128 to 167 (40 track) or 128 to

207 (80 track)

 S = the sector number - from 1 to 10

Address = the start address of any location in the Spectrum memory. Nb: 512 bytes will be

used.

Working with a monitor program, this powerful command allows you to access a single

sector on the disk from Basic. Particularly useful for breaking into, examining and

modifying a Snapshot file.

Using Streams and Channels

i) OPEN #S; Dl "file-name" IN or OUT

This command is used to open a file on the disk and attach a stream number to it, so that

you can print out to or input from that Stream, where:

 S = Stream number - from 4 to 16 (type the number only)

 D = Dl or D2 (drive number - type D as well as drive no.)

 IN = When you specifically need an input or read file opened

OUT = When you specifically need an output or write file opened

If you choose not to specify IN or OUT, then the default is the same as Interface 1: an input

file if the file-name is found in the catalogue, and an output file if the file-name is not

found.

+DivIDE Firmware Supplement

Page 107 of 140

ii) CLOSE #*S

This command closes the file and stream opened in the previous command. S = Stream

number. If you do not type the stream number, then all current open streams will be closed.

Note the addition of the * to Microdrive syntax.

iii) MOVE

This is a command which moves a file, one sector at a time, to either another file or a

stream.

 MOVE Dl "file-name" TO #S

This command reads the file and outputs it to the specified stream (where Dl = Dl or D2,

and S = the stream number, from 4 to 16).

 MOVE Dl "file-name" TO Dl "file-name"

This command reads the file and writes it to the second file.

iv) CLEAR #

This command clears all open streams and channels, but it does not CLOSE a file.

v) CLS #

This command clears the screen and attribute area, and resets BORDER, PAPER, INVERSE,

BRIGHT, OVER and FLASH.

The Execute File

An execute file is a machine code file occupying up to one sectorlength of memory (510

bytes) . When loaded from disk it is executed (RANDOMISE USR) in the DivIDE Plus RAM,

and not in the Spectrum’s memory as other files are. An execute file gives the programmer

the ability to execute utility routines - such as renumbering a program - without affecting

or using the Spectrum memory.

To save a sector length of memory as an execute file, enter

 SAVE Dl "file-name",X,Address

where:

 Dl = Dl or D2 (drive number)

 X = the execute file identifier - just type X

 Address = the location in the Spectrum of the machine-code program, which has been

assembled to run at 3BD6 hex.

To load the execute file and run it internally in the DivIDE Plus, enter:

 LOAD Dl "file-name" X

or LOAD p(n) - in other words, the normal abbreviated syntax for LOAD.

After execution, control is returned to the Spectrum.

+DivIDE Firmware Supplement

Page 108 of 140

+DivIDE Firmware Supplement

Page 109 of 140

QUICK REFERENCE GUIDE

BASIC

GOTO *(d);(m),(n) Specify location of virtual disk

RUN Runs an autoload file on Virtual Disk 1

READ DISK

CAT (n) Displays catalogue

CAT (n)! Displays shortened catalogue

LOAD FILES

LOAD D(n) "file-name" Loads file (except Snapshot files)

LOAD *(n);“file-name” Loads file (OPUS Discovery syntax)

LOAD D(n) "file-name" S Loads 48K Snapshot file

LOAD D(n) "file-name" K Loads 128K Snapshot file

LOAD D(n) "file-name"SCREEN$ Loads screen file

LOAD (n) Loads the program (from its number)

LOAD p(n) Loads the program (from its number)

MERGE D(n) “file-name” Merges file with memory (except Snapshot file)

MERGE *(n);“file-name” Merges file with memory (OPUS format)

CHECK

MERGE p(n) Merges file with memory (from its number)

MERGE (n) Merges file with memory (from its number)

SAVE FILES

SAVE D(n) "file-name" Saves file

SAVE *(n);“file-name” Saves file (OPUS Discovery syntax)

VERIFY D(n) "file-name" Confirms save has been made

VERIFY *(n);“file-name” Confirms save (OPUS Discovery syntax)

DELETE FILES

ERASE D(n) "file-name" TO "new file-name" Renames a file

ERASE D(n) "file-name" Erases a file

ERASE *(n);“file-name” Erases a file

ERASE (n);”file-name” Opus Discovery **CHECK**

ERASE (n) **CHECK**

ERASE p(n) **CHECK**

FORMATTING DISKS

FORMAT D(n) Formats virtual disk in drive n

+DivIDE Firmware Supplement

Page 110 of 140

FORMAT Dl TO 2 Formats drive n and copies contents of drive 2 to drive 1

BEWARE

FORMAT 1 (OPUS Discovery) **CHECK**

STREAMS

OPEN #(n);D(n) "file-name" IN or OUT Opens a file; attaches stream no.

CLOSE #*(n) Closes a file & stream no.

CLOSE #* Closes all open files

MOVE D(n) "file-name" TO *(n) Reads file and outputs it to specified stream

MOVE D(n) "file-name" TO D(n) "file-name" Reads file and writes it to a 2nd file

CLEAR # Clears all open streams & channels

CLS # Clears screen & attributes area

SAVE D(n) "file-name"X,Address Saves sector length memory to disk

LOAD D(n) "file-name"X Executes file & runs it in DivIDE Plus RAM

DIRECT SECTOR ACCESS

LOAD @ D,T,S,Address Reads a specified track/ sector to memory

SAVE @ D,T,S,Address Writes to specified track/ sector on disk

WILDCARDS

ERASE, CAT can be used with * and ? for wild-card operations

Snapshot (NMI) Button halts program temporarily & allows selection of:

3 - Screen save;

4 - 48K Snapshot save;

5 - 128K Snapshot save;

Key X breaks out of Snapshot and returns to program

DEMFIR Firmware

for

ZX Spectrum DivIDE Plus Interface

© Tritol

USER MANUAL

Manual Update 1 (August 2009)

DEMFIR Firmware Supplement

Page 112 of 140

Introduction

DEMFIR is similar to FATware and handles the ISO 9660 file system found on CD-

ROMs. You can use either CDs or unfragmented ISO images stored on a hard disk or

compact flash card.

DEMFIR supports TAP, TZX, SNA, Z80, MFC, POK and SCR files, but as with FATware

is currently read only (unless you try the v0.8 beta version). Note that the TZX support

does not support non-standard loading techniques.

If using DEMFIR with a CD please note that you should put your CD into the CD-ROM

drive and turn that on and allow it to start up BEFORE you switch on the Spectrum.

Starting Up DEMFIR

DEMFIR comes in two parts – the part installed on the Flash EPROM and a second part

which needs to be downloaded and installed on the first available ISO image – this can be

the generic boot image (demfirXXXX_R.bin) placed in the first sector of the image, or

demfirboot.img used on a standard bootable CD made with software on your PC such as

Nero. The image file can be downloaded from http://demfir.sourceforge.net/. You may

also like to try the beta test version of DEMFIR v0.8 which includes the ability to save to a

.tap file – this is available from: http://speccy.trilogic.cz/tritol/demfir-80324.tar.gz

v0.8 includes an empty.tap file, which you can overwrite by writing to from the ZX

Spectrum if you are using a compact flash card or hard disk with an ISO image.

Once the drive is up and running, turn on the Spectrum and then press the NMI button to

start up DEMFIR. You will see the DEMFIR version message (D0.7b) appear in green in

the top right hand corner – if it appears in red, then something has gone wrong with the

install. Press the ENTER key to browse the ISO image and find the files you need.

If the ISO image is not the first file on the hard disk or compact flash card, then you can

use the search option on the startup menu to find the ISO image you wish to work with.

Using DEMFIR

The integrated file browser when you press the NMI button, makes finding and loading the

various file formats easily. As with FATWare, if you select a .tap or .tzx file, you will need

to enter LOAD “” in BASIC to load the file (otherwise LOAD “” will try to load a file from

cassette as normally).

The NMI Menu

Pressing the NMI button on the interface whilst DEMFIR is chosen as the firmware, pulls

up the NMI menu.

The first line of the NMI menu shows (from left to right)

http://demfir.sourceforge.net/
http://speccy.trilogic.cz/tritol/demfir-80324.tar.gz

DEMFIR Firmware Supplement

Page 113 of 140

 Interrupt Status (IM1/ IM2, EI / DI)

 Actual Mode (48K / 128K)

 Active 128K page

 Selected Virtual Memory (VRAM)

The second line of the NMI menu shows a list of supported formats, as these can be

configured within config.a80 when DEMFIR is built:

 TAP - Standard emulator compatible file - emulates a cassette tape

 TZX - Standard emulator compatible file

 Z80 – Z80 snapshots

 SNA – SNA snapshots

 MFC – MFC snapshots

 SCR – screenshot view

 POK – PokeManager

 DFW – DivIDE Firmware – file for other MAPRAM firmware installation

The third line of the NMI menu shows other settings (again configured within config.a80

when DEMFIR is built):

 CHS – Support for HDD without LBA is enabled

 WDC – Automatic disk geometry pre-set during device detection (required for

some Western Digital hard disk drives)

 +3R – Changes ROM of +2A/+3 via port 8189 (?)

 MTF – TZX support for nontap blocks is enabled

 SSv – Screensaver enabled

Finally, you can also change the logo within config.a80 (USELOGO 1,2 or 3) and enabled

BOLD_FONT to change the font used within the NMI menus.

The NMI menu gives you the ability to undertake the following tasks by pressing the

following keys (the first key operates the command):

ENTER

Switch to the file browser.

Device

Switch between the master and slave devices connected to the DivIDE Plus

Medium

Re-read the medium and detect the ISO image.

Reset

Soft reset of the Spectrum. Press the Symbol Shift key at the same time to clear

the RAM used by DEMFIR also.

Init

Detect new devices. Press the Symbol Shift key at the same time to bypass the

automatic detection of device size – DEMFIR will assume the maximum supported

size (128GB for LBA devices and 8GB for CHS devices). In the case of CHS hard

disks, this may assist with some troublesome disks.

Quit

Exit the NMI menu and switch to video RAM mode – see VRAM below.

DEMFIR Firmware Supplement

Page 114 of 140

Find

In the case of a hard disk or compact flash card, this will find all ISO images on the

device (this can be slow). Press the Shift key at the same time to enter a start

position for the search. Press the SPACE key to stop searching.

Sector

Enter the sector where the ISO image is expected, or where you wish DEMFIR to

start looking from. You need to enter the sector number in hexadecimal.

VRAM

This shows the actual Video RAM and is automatically entered after you Quit the

file browser. Press V again to switch between the 1
st
 and 2

nd
 video RAM locations

(on a 128K machine). This can be useful to check if a screenshot is what you

expect. If you do not press anything for 2 seconds, you will return to the NMI

menu.

Paging

This disables the 128K paging (is equivalent to OUT 32765,48). You will have to

reset the Spectrum hardware to re-enable paging.

Cheat

This enters the PokeManager, where available and reads in .pok files from the ISO

image, containing cheats for Spectrum programs. It lists the cheats and current

state. If no cheats exist, then it enables you to enter POKEs by hand – press CAPS

SHIFT 1 to escape.

The File Browser

Once in the file browser, use the cursor keys to navigate:

Up, Down – move through the file list

Left – Go to the top of the current page – if cursor is already at the top, it will go to the

previous page.

Right – Go to the bottom of the current page – if cursor is already at the top, it will go to

the next page.

ENTER

Load program, or if it is a screenshot, view the image (press any key to exit). If it is

a directory which is highlighted, the file browser will then open that directory.

SYMBOL SHIFT + ENTER

Jump to LOAD “” when a .tap file is selected.

SYMBOL SHIFT + W

V0.8 only. Use this to highlight the empty.tap file and then press these keys to mark

it as writeable. Note that empty.tap has a fixed size of 128K and you can only save

to it once – use TZX2TAP and then TAP2TZX to truncate the saved file on your

PC if using on a 48K ZX Spectrum system.

SPACE

Exit File Browser.

The File Browser – Search by Name

Whilst in the File Browser, pressing any other key allows you to start entering a filename

to search by name. The search is case sensitive. Press the . (full stop) key to jump to the

DEMFIR Firmware Supplement

Page 115 of 140

start of the directory, you can also jump to the end of the directory by searching for “pipe”

(or pressing SYMBOL SHIFT SPACE)

If you wish to search for characters on the same keys as the control keys (eg 5,6,7 and 8),

press CAPS SHIFT 3 first – the border will change to blue and the next key you press will

use the ASCII character, rather than thinking it is a command.

As you enter the search term, the cursor will move to the first filename which matches the

search term. The search term is entered in overwrite mode, and the following keys can be

used to edit the search term:

CAPS SHIFT 1 – exit without storing the value

CAPS SHIFT 2 – clear the whole search term

CAPS SHIFT 4 – insert space to the left of the cursor

CAPS SHIFT 5 – move cursor left

CAPS SHIFT 6 – move cursor to the start of the search term

CAPS SHIFT 7 – move cursor to the end of the search term

CAPS SHIFT 8 – move cursor right

CAPS SHIFT 9 – delete character on the right of the cursor

CAPS SHIFT 9 – delete character on the left of the cursor

ENTER – exit and store the value, finding the first matching filename

Search is cancelled as soon as you use one of the other commands above.

The File Browser – Working with .tap or .tzx Files

When you select a .tap or .tzx file from within the file browser, DEMFIR checks the

validity of the selected file. The cursor will remain green if the file is valid, or change to

yellow if the file is valid, but contains too many files for DEMFIR to index, or red if the

file is broken. Further, if the cursor turns magenta, it indicates that there is a block within

a .tzx file which may make it unreliable.

When LOADing from a .tap or .tzx file, DEMFIR remembers the position within the file,

and will automatically “rewind” the file to the start once the file end is reached.

The PokeManager

The PokeManager is useful for controlling game cheats. It provides a list of all cheats

currently stored on the ISO image, listing the name of the cheat and indicating whether it is

active (YES) or inactive (NO). In the case of cheats which require a specific value

entering (eg. Number of lives), the value is also shown.

To use, load a game into the ZX Spectrum, and then press the NMI button. Press the C key

to enter the PokeManager

The controls for the PokeManager are the same as for the file browser, with the following

additional keys (again the first key operates the command):

DEMFIR Firmware Supplement

Page 116 of 140

Add

Add a POKE through manual entry. This will ask you to enter a string in the format:

“page:address,value”. You will need to enter the 128K RAM page number (0-7, 8

to ignore), and then the memory location (23552-65535), followed by the value to

be POKEd into that memory location. The original value (if known) is shown, rather

than the current memory location.

Delete

Delete the last POKE or cheat in the list.

Clear

Deletes all cheats and starts the manual entry of a POKE.

The cursor colour is a helpful indication of the validity of cheats:

 Green – indicates the original value is known and the cheat can be turned ON or OFF.

 Yellow – the original value is unknown, therefore only use the cheat if you are certain

that you have the correct .pok file – do not try to turn the cheat OFF.

 Red – the original value is known, but neither the original value nor the cheat value is

actually in memory – therefore turning the cheat ON or OFF will probably cause

memory corruption.

Page 117 of 140

MDOS3 Firmware

for

ZX Spectrum DivIDE Plus Interface

USER MANUAL

General DivIDE Version

Manual Update 1 (February 2010)

MDOS3 Firmware Supplement

Page 118 of 140

What is MDOS3?

MDOS3 is a modified version of the file system used on the Czechoslovakian Didaktik

D40 and D80 disk drives. It can access physical floppy disk drives, virtual hard disks

saved as an .md3 hard disk image file on an IDE hard disk, CD-ROM or compact flash

card and can even play audio CDs.

You need to ensure that your compact flash card or hard disk has at least a .md3 hard disk

image file on it, otherwise MDOS3 will not start up. A suitable .md3 file appears at:

http://velesoft.speccy.cz/mdos-discs.zip

Windows based utilities are also available for writing to / reading from the MDOS3 .md3

hard disk image files - see http://velesoft.speccy.cz/zx/divide/divide-mdos3.htm.

If you want access to more than one .md3 hard disk image file, you will need to partition

your hard disk (or compact flash card), as MDOS3 can only recognise one .md3 hard disk

image file per partition.

Within the hard disk image file, MDOS3 expects you to have a series of virtual floppy

disks which are identified by ending in .d80. The RealSpectrum emulator allows you to

create .d80 files and there is also an archive of D80 files held at: www.frgt10.wz.cz

(although most of the programs are in Czech).

When creating .d80 virtual floppy disks, it is recommended that you separate each .d80 file

to ensure that there is sufficient room for them to be filled up to their maximum. To do

this you need to copy the infosec.bin file, followed by the .d80 file, and then free.bin file.

A dedicated page on MDOS3 also appears at http://ci5.speccy.cz/mdos3/ (unfortunately it

is mainly in Czech).

Using MDOS3

MDOS3 allows you to use 4 virtual disks at a time, lettered from drive A: through to drive

D:

The ZX BASIC LOAD and SAVE commands default to drive A: although you can perform

various drive commands, using a format similar to DOS on a PC see the command

reference below.

Before you can mess with drives, you need to set them up, using the NMI Menu.

NMI Menu

Pressing the NMI button at the rear of the DivIDE Plus interface enables the MDOS3

filemanager. You see a screen on which appears a list of four items at the top which

correspond to the drives A: B: C: and D: as they would be seen from the ZX Spectrum.

MDOS3 Firmware Supplement

Page 119 of 140

You can set each of these drives to look at physical floppy disk drives, or to a virtual

floppy disk drive contained on a .md3 hard disk image file. To do this, press the keys 1-4

(where 1 represents drive A: and 4 represents drive D:). This allows you to access the

Drive Settings sub-menu.

Altering Drive Settings Sub-Menu

Having pressed the key 1,2, 3 or 4 you can are given the option to point the chosen drive to

the physical floppy disk drives (fp0 or fp1) or to the .md3 hard disk image file (HDD).

You can also change the following settings for the chosen drive:

a) Change the drive allocation letter by pressing the keys 0 or 9 to change the drive letter

(these keys cycle through the letters A: to D:).

b) Set the read-only status of the drive (press the Y key)

c) Alter the cassette tape emulation mode by pressing the T key.

The tape emulation mode forces the ZX Spectrum to use a drive as though it was a

cassette tape, which allows you to use the normal LOAD "" and SAVE "" commands.

To do this, select a file and press the T button which circles through various options

indicated by letters below the drive names:

-- No tape emulation

L- Used for LOAD command

-S Used for SAVE command

LS Used for both LOAD and SAVE

As you can see, this allows you to use different drives for tape loading and saving.

Allocating Virtual Floppy Disk Drives

For each drive that is set as pointing to a HDD device, you will need to select the .d80

virtual floppy disk contained within the .md3 hard disk image file to be pointed to by the

chosen drive letter.

If you have partitioned your compact flash card (or hard disk), then you can switch to a

different partition (which must also contain a .md3 hard disk image file) by pressing the W

key to change the partition.

Pressing the drive letters A to D enables you to find the .d80 virtual floppy disk which you

wish to allocate as that drive - this will overwrite the original setting.

Once you press A to D, you can enter a wildcard mask to find the file you want - press

ENTER if you want to browse through the .md3 hard disk image file yourself. The mask

allows you to enter wildcards, such as test*.* which will find all files beginning with test

(such as test.d80, test1.d80 and tester.d80).

The results of the search are presented in pages of 20 filenames - use the cursor keys to

move up and down the list, or the right and left cursor keys to move between pages. Press

ENTER to select the chosen file.

MDOS3 Firmware Supplement

Page 120 of 140

You can press the C key when a file is highlighted to get a catalogue of the .d80 virtual

floppy disk - this will return the name of the disk, the number of files and free space. Each

file held on the virtual floppy disk is then listed, together with their length, start address,

BASIC memory size (excluding variables) and file attributes.

The CAPS SHIFT C key can also be used to just list the executable files on the .d80 virtual

floppy disk.

If you make a mistake and do not wish to continue with the search, you can press EDIT

(CAPS SHIFT + 1) whilst in a text entry field, or BREAK (CAPS SHIFT + SPACE)

during the actual search mode.

Finally, if you know the name of a file contained within a .d80 virtual floppy disk but are

unsure which virtual floppy disk it is, press the F key to enter a search mask. CAPS

SHIFT+f can also be used to use a case sensitive search. Again, wildcards are allowed.

Other Options

You can change the name of the virtual floppy disk drive by pressing CAPS SHIFT+the

drive letter key (A to D). This name can then be used in the MDOS3 commands in place of

the drive letter.

You can also enable/disable write protection for the virtual floppy disk drive by pressing

SYMBOL SHIFT+the drive letter key (A to D)

Other buttons allow you to flick to the Spectrum screen (press the E key) or return to

BASIC and save a snapshot of the current program (S key) or return to BASIC and save the

screen (P key).

You can also enter a machine code monitor by pressing the V key, or play an audio CD by

pressing the L key.

Exit the NMI button

Once you have set up the virtual floppy disk drives as required, press the Q key to exit the

NMI menu and return to 48K BASIC.

MDOS3 Firmware Supplement

Page 121 of 140

NMI Menu Keys Summary:

1,2,3,4 Change Drive settings

0,9 Change actual drive allocation letter

t Select TAPE emulation mode.

y Change overwrite mode for tape emulation.

a,b,c,d Select virtual floppy disks on the .md3 hard disk image file

CS+A,B,C,D Rename the virtual floppy disk drive

SS+A,B,C,D Toggle write-protection for the virtual floppy disk drive

W Select a different .md3 hard disk image file

Q Exit

E Shows Spectrum screen from when the NMI button was pressed

 (key must be held down)

F Search for a file

CS+F Search for a file - (case sensitive)

S Return to BASIC and save a SNAPSHOT

V Start the monitor

P Return to BASIC and save screen

I Try to return to BASIC

L Play audio CD attached to interface

H Helpscreen

MDOS3 Firmware Supplement

Page 122 of 140

MDOS3 Command Reference

CLS attr

Sets the INK, PAPER and COLOUR by reference to the value of attr - for example,

CLS 7 sets black paper and border, with white ink.

LIST *

This command provides background information on MDOS3.

CAT "x:mask"

This command produces a directory of the disk (or drive) where x is the name of

the disk (or drive), and the mask is the DOS like wildcard to select filenames.

The following examples will therefore work:

CAT "a:" - provide a directory of all files on the A: drive.

CAT "a:test*.*" - provide a directory of all files on the A: drive which begin

with the letters test.

CAT "a:*.P" - provide a directory of all BASIC files on the A: drive.

CAT "a:*.B" - provide a directory of all the code files on the A: drive.

CAT "test: " - provide a directory of all the files on the virtual floppy disk drive

named test.

LOAD *"file"

LOAD *"x:file"

LOAD *"file" CODE

LOAD *"x:file" CODE

This command loads the specified file in the same way as on the Spectrum. You

can specify the drive letter if you do not wish to use the current drive. The asterisk

(*) is optional.

MERGE *"file"

MERGE *"x:file"

This command merges the specified file with the one currently in memory. You

can specify the drive letter if you do not wish to use the current drive.

SAVE *"file"

SAVE *"x:file"

SAVE *"file" CODE

SAVE *"x:file" CODE

SAVE *"file" RUN

SAVE *"x:file" RUN

This command saves the specified file. You can specify the drive letter if you do

not wish to use the current drive. The asterisk (*) is optional.

MDOS3 Firmware Supplement

Page 123 of 140

RUN *"file"

RUN !"file"

RUN "file"

These all set RAMTOP according the start address of the file (stored in Bytes type -

"file.b") - 1 and then starts the program from that address. If the file is not found,

then RAMTOP remains the same.

These commands are equivalent to:
 CLEAR adr-1: LOAD *"file" CODE: RANDOMIZE USR adr

CLEAR *"file"

CLEAR !"file"

CLEAR "file"

These are similar to the RUN command - they set RAMTOP according the start

address of the file (stored in Bytes type - "file.b") - 1 and then load the program to

that address. If the file is not found, then RAMTOP remains the same. The

program is not started.

These commands are equivalent to:
 CLEAR adr-1: LOAD *"file" CODE

GO TO *"file"

GO TO !"file"

GO TO "file"

These are similar to the RUN command, except they do not alter RAMTOP. They

merely load the program and then start it.

These commands are equivalent to:
 LOAD *"file" CODE: RANDOMIZE USR adr

MOVE "x:mask", "y:"

MOVE "x:mask", "y:file"

This command is used to copy disks. x and y are the names of the disk (or drive),

and the mask is the DOS like wildcard to select filenames. If x and y are the same,

then the mask cannot contain wildcards. file is the destination filename - used

when copying files on the same disk.

The following examples will therefore work:

MOVE "a:*.*", "b:" - copy all files on drive a: to drive b:

MOVE "a:*.scr", "b:" - copy all files ending in .scr from drive a: to drive b:

MOVE "HRY1:a.*", "HRY60:" - copy all files beginning with the letter a from the

disk with the name HRY1 to the disk with the name HRY60 (both disks must be on

the same drive)

ERASE *"file"

ERASE *"x:file"

This command deletes the specified file from disk. You can specify the drive letter

if you do not wish to use the current drive.

FORMAT *"x:name"

This command formats the specified disk and gives it the specified name.

MDOS3 Firmware Supplement

Page 124 of 140

READ *"x: ",sector,address

This command reads a specified sector on the given drive (x) to the specified

address in memory.

MDOS3 Firmware Supplement

Page 125 of 140

MDOS3 Programming

It is possible to access some of the features of the operating system from machine-code

programs, so that utility programs which access files can be written.

Calls are available in MDOS3 using hook codes, which are invoked by paging into DivIDE

memory and then calling the hook routine $24, with the call ID in A and parameters in

other registers

To page into DivIDE Memory

.divIDE_page

 ld a,$4F

 ld de,TAB-26

 call $25AB

 ld hl,0

 ld (TAB),hl

 ld hl,$3EF7

 ld (TAB+2),hl

 rst 0

 ret

TAB dw 0

 dw $3EF7

Now call the hook routine
 ld a,($3E6B)

 ld e,a

 ld a,4 ; GET_PART_TABLE call

Then page back in the ZX ROM
ZXROM ld a,32

 ld (16119),a

 jp $1700

Reading data from a virtual floppy disk is done the same way as reading from physical drive. The
routines DREAD and DWRITE are changed accordingly by MDOS3 - it is pointless trying to use
lower level access. Errors are caught in the same way as on real media.

If you wish to use these service hook codes, you will need to ensure that the user presses the NMI
button after booting MDOS3 so that all of the partition and device data has been stored within the
system. GET_VER can be used to check status of MDOS3 initialisation.

The MDOS3 Service Hook Codes

MDOS3 provides various service hook codes to access facilities and hardware features and

can be used without knowing anything about the interface on which MDOS is running.

MDOS3 provides the following service hook codes:

 GET_VER

 GET_MAPTAB

 GET_GEOM

 GET_AKTPAR

 GET_PART_TABLE

 DRIVEPART

 PREPOCET

MDOS3 Firmware Supplement

Page 126 of 140

 CMMAPTAB

 DRVCMPS

 DIVIDE0

 INC32

 DEC32

 ADD32HL

 DEC32HL

 ADD1693

 DEC1693

 NEXTDISK

 PREVDISK

 NASDRNMI

 BACKSCR

 RESTSCR

 SET_BOOTDISK

 RES_BOOTDISK

 CLSMAPTA

 DRVSELS

 READHDD

 WRITEHDD

 TST_BSY

 READIDATA

 READIDATAPI

GET_VER (0)

Fetches the version of MDOS3 - the version is the date of the build across the L, H and DE

registers. If A=0 and the z flag is set, then MDOS3 was not initialised and the services

below marked with asterisk (*) cannot be used - the tables generated by the NMI button are

empty.

 IN: -

 OUT: L = day, H=month, DE = year, A =init MDOS3

 Register status on return: z flag suggests MDOS3 not initialised.

GET_MAPTAB (1)

Returns the address of the MAPTAB (drive mapping) table. This is the main routine for

getting details about drives allocated to the system. The entries in the drive mapping table

for each drive can be set into BCDE for use with the other hook codes.

 IN: -

 OUT: HL = address of table.

 Register status on return: none

MDOS3 Firmware Supplement

Page 127 of 140

GET_GEOM (2)

Returns the address of the GEOM (drive geometry) table.

 IN: -

 OUT: HL = address of table.

 Register status on return: none

GET_AKTPAR (3)

Returns the address of the AKTPAR (active partition) table.

 IN: -

 OUT: HL = address of table.

 Register status on return: none

GET_PART_TABLE (4)

Returns the address of the PART_TABLE (detected partitions) table.

 IN: -

 OUT: HL = address of table.

 Register status on return: none

DRIVEPART (5*)

This returns details of the partition which contains the selected virtual floppy disk

identified by the specified drive number.

 IN: E = drive number (0-3)

 OUT: IX = address of partition details related to floppy in selected drive.

 A - partition number

 Flag Z is set if

 Register status on return: Flag Z is set if drive is empty.

 Changes BC,HL and DE

MDOS3 Firmware Supplement

Page 128 of 140

PREPOCET (6)

This updates the drive system variables address to the MAPTAB address.

 IN: IX = $3E00 (drive system variables address)

 OUT: IX = address of MAPTAB table for appropriate drive

 Register status on return: None

CMMAPTAB (7)

This is alternative way of finding the MAPTAB table for a given drive.

 IN: E = drive number (0-3)

 OUT: IX = address of MAPTAB table for appropriate drive

 Register status on return: None

DRVCMPS (8)

This returns the parameters for a specified floppy disk drive. The parameters are set during

the drive mapping process.

 IN: E = drive number (floppy disk 0, or floppy disk 1)

 OUT: IX = address of drive parameters

 Register status on return: BC Changed

DIVIDE0 (9)

This performs 32 bit division on a specified number (DEHL/C). DEHL is the higher part

of an 4 byte register, followed by the lower part of the 4 byte register (useful for dealing

with LBA offsets)

 IN: DEHL = number

 C = divider

 OUT: DE = result

 A = remainder

 Register status on return: B Changed

MDOS3 Firmware Supplement

Page 129 of 140

INC32 (10)

This increases the specified four byte register by one (useful for dealing with LBA offsets).

 IN: BCDE = 32 bit number

 OUT: BCDE= result

 Register status on return: Flag Z is set if BCDE=0

DEC32 (11)

This decreases the specified four byte register by one (useful for dealing with LBA offsets).

 IN: BCDE = 32 bit number

 OUT: BCDE= result

 Register status on return: Flag Z is set if BCDE=0

 Flag NC is set if BCDE = -1

ADD32HL (12)

This adds HL to the specified four byte register (useful for dealing with LBA offsets).

 IN: BCDE = 32 bit number

 HL = 16 bit number

 OUT: BCDE= result

 Register status on return: Flag C is set for overflow

DEC32HL (13)

This deducts HL from the specified four byte register (useful for dealing with LBA

offsets).

 IN: BCDE = 32 bit number

 HL = 16 bit number

 OUT: BCDE= result

 Register status on return: Flag C is set for overflow

MDOS3 Firmware Supplement

Page 130 of 140

ADD1693 (14)

This adds 1693 to the specified four byte register (useful for dealing with LBA offsets).

 IN: BCDE = 32 bit number

 OUT: BCDE= result

 Register status on return: Flag C is set for overflow

DEC1693 (15)

This deducts 1693 from the specified four byte register (useful for dealing with LBA

offsets).

 IN: BCDE = 32 bit number

 OUT: BCDE= result

 Register status on return: Flag C is set for overflow

NEXTDISK (16*)

This moves the pointer in BCDE to the start of the next virtual disk on the current drive.

 IN: BCDE = 32 bit number as pointer to virtual disk

 IX = pointer to partition table linked to the drive on which the virtual disk is

 located = see GET_PART_TABLE

 OUT: BCDE= result

 Register status on return: Flag C is set if the pointer has reached the end of

 the partition

 HL Changed

MDOS3 Firmware Supplement

Page 131 of 140

PREVDISK (17*)

This moves the pointer in BCDE to the start of the previous virtual disk on the current

drive.

 IN: BCDE = 32 bit number as pointer to virtual disk

 IX = pointer to partition table linked to the drive on which the virtual disk is

 located = see GET_PART_TABLE

 OUT: BCDE= result

 Register status on return: Flag NC is set if the pointer is at the start of

 the partition

 HL Changed

NASDRNMI (18)

This resets the MDOS3 system - for example, if you change the mapping in the MAPTAB

table, you will need to call this to update the drive parameters. This call re-sets the

MDOS3 system in accordance with the latest MAPTAB, returns the physical heads of the

disk drives back to the beginning.

 IN: none

 OUT: none

 Register status on return: HL, BC, DE, IX Changed

BACKSCR (19)

This copies the VRAM1 memory (the Spectrum's screen) into DivIDE memory.

 IN: none

 OUT: none

 Register status on return: None

RESTSCR (20)

This copies the DivIDE memory back into VRAM1 memory (the Spectrum's screen).

 IN: none

 OUT: none

 Register status on return: None

MDOS3 Firmware Supplement

Page 132 of 140

SET_BOOTDISK (21)

This takes the disk from which the boot was performed and sets that as the specified drive

number. The MAPTAB table is changed, but not the correct mapping on a hard disk drive.

The original disk setting is memorised for use with the RES_BOOTDISK call.

 IN: E = drive number (0-3)

 OUT: none

 Register status on return: HL, BC, DE and IX changed

RES_BOOTDISK (22)

This reverses the action of SET_BOOTDISK, re-setting the specified drive number and the

MAPTAB table.

 IN: E = drive number (0-3)

 OUT: none

 Register status on return: HL, BC, DE and IX changed

CLSMAPTA (23)

This restores the MAPTAB and AKTPAR tables to their original values when the DivIDE

Plus was first switched on.

 IN: none

 OUT: none

 Register status on return: HL, BC, DE and IX changed

DRVSELS (24)

This starts the specified physical drive (floppy disk 0 or 1) spinning up to speed.

 IN: E = physical disk drive number (0-1)

 OUT: none

 Register status on return: none

MDOS3 Firmware Supplement

Page 133 of 140

READHDD (25*)

This reads a specified sector detailed by the 32 bit number in BCDE. The number is

converted to CHS using the disk geometry. The error number corresponds to the output of

the DREAD routine. To read data it is recommended that you set a disk into a drive letter

and then use the floppy sector reading routines (DREAD and BREAD).

 IN: BCDE = 32 bit number of the LBA sector - the 4th bit of the 4th byte is used

 to select the master/slave device

 HL is the address of the space to store the sector

 OUT: BC = error number

 If successful, then HL = HL +512

 Register status on return: HL,BC,DE and IX are updated

WRITEHDD (26*)

This writes a specified sector detailed by the 32 bit number in BCDE. The number is

converted to CHS using the disk geometry. The error number corresponds to the output of

the DWRITE routine. To write data it is recommended that you set a disk into a drive

letter and then use the floppy sector reading routines (DWRITE and BWRITE).

 IN: BCDE = 32 bit number of the LBA sector - the 4th bit of the 4th byte is used

 to select the master/slave device

 HL is the address of the space to store the sector

 OUT: BC = error number

 If successful, then HL = HL +512

 Register status on return: HL,BC,DE and IX are updated

TST_BSY (27)

This tests to see if the busy status register is clear - it will wait around 2 seconds if the

drive is busy. All Hard disk read/write commands use this automatically.

 IN: BCDE = 32 bit number of the LBA sector - the 4th bit of the 4th byte is used

 to select the master/slave device

 OUT: A = 0 + flag Z (ready)

 or

 A=255 + flag NZ (busy)

 Register status on return: Z and NZ flag are updated

MDOS3 Firmware Supplement

Page 134 of 140

READIDATA (28)

This reads the ID sector from an ATA device to the specified address. The error number

corresponds to the output of the DREAD routine.

 IN: BCDE = 32 bit number of the LBA sector - the 4th bit of the 4th byte is used

 to select the master/slave device

 HL = address for storage

 OUT: BC = error number

 Register status on return: None

READIDATAPI (29)

This reads the ID sector from an ATAPI device (such as a CD) to the specified address.

The error number corresponds to the output of the DREAD routine.

 IN: BCDE = 32 bit number of the LBA sector - the 4th bit of the 4th byte is used

 to select the master/slave device

 HL = address for storage

 OUT: BC = error number

 Register status on return: None

MDOS3 Firmware Supplement

Page 135 of 140

Table definitions:

MAPTAB

This is the drive mapping table - it defines whether a physical drive is mapped to floppy disk 0,
floppy disk 1 or a (virtual) hard disk.

MAPTAB db 2,0,0,0,0 ;drive A:

 db 3,0,0,0,0 ;drive B:

 db 4,0,0,0,0 ;drive C:

 db 5,0,0,0,0 ;drive D:

 db 3 ;TAPE emulation indicator

 db 0 ; Rewrite mode enabled?

The first four rows (drive A to drive B) define the drives. If the first byte contains 0 or 1, then this is
the physical floppy disk fd0 or fd1.

If however, the first byte in a row contains 2 to 5, the drive is mapped to a hard disk and the next
four bytes contain the number of the LBA sector on that drive, where the floppy disk image is stored
(pointing to the infosector). The number is stored from the lower to the higher byte. If the 4th bit is
set in the last byte, then this indicates a slave hard disk device.

The next row is then the TAPE emulation. 1 = LOAD, 2=SAVE, 3=LOAD/SAVE

The final row indicates the rewrite mode. 0 = Ask for confirmation before overwriting an existing
file. 1 = Do not overwrite. 2 = Overwrite without confirmation.

GEOM

This is the geometry of the master and slave devices.

GEOM db $D2,$03,$08,$20 ;master

 db $EA,$01,$02,$20 ;slave

The two rows define the geometry for each hard disk device. Bytes 0-1 contain the number of
cylinders, byte 2 contains the number of heads and byte 3 the number of sectors.

AKTPAR

This is the details of the current active partition (selected by the W key in the NMI menu).

AKTPAR db 1 ;number of the partition

 db $20,0,0,0 ;start of the partition

 db $E0,$D1,$03,0 ;length of the partition

The first row defines the number of the partition. 1-4 is a primary partition on the Master device, 5-
8 is a primary partition on the Slave device. 254 indicates that the whole of the Master device is
available. 255 indicates that the whole of the Slave device is available.

The next row then contain 4 bytes each equal the number of the LBA sector on that drive where the
partition starts.

The final row contains four bytes to provide the length of the partition in LBA sectors - hence the
last LBA sector can be found through beginning+length+1.

MDOS3 Firmware Supplement

Page 136 of 140

PART_TABLE

This is the details of all partitions found on the devices by MDOS3 during initialisation.

PART_TABLE db 1 ;number of the partition

 db $20,0,0,0 ;start of the partition

 db $E0,$D1,$03,0 ;length of the partition

.

.

.

 db 6 ;number of the partition

 db $80,$3E,0,0 ;start of the partition

 db $0,$3C,0,0 ;length of the partition

 db 0 ; Indentify end of partition list.

The table is formed by repeating details of the number of the partition, start and length for each
partition found.

The first row defines the number of the partition. 0 indicates the end of the table.
1-4 is a primary partition on the Master device, 5-8 is a primary partition on the Slave device.
255 indicates that the whole of the Slave device is available and the first floppy disk image has
been found by the user selecting the disk in the NMI menu
254 indicates that the whole of the Master device is available and the first floppy disk image has
been found by the user selecting the disk in the NMI menu
253 indicates that the whole of the Slave device is available but has not yet been searched for the
first floppy disk image.
252 indicates that the whole of the Master device is available but has not yet been searched for the
first floppy disk image.

NOTE: if the partition number is 255 or 254, the start of the partition is actually a pointer to the start
of the floppy disk image, and the length is the length of the floppy disk image.

Programming for DivIDE Plus

Page 137 of 140

Programming for DivIDE Plus

These notes are intended to assist developers of firmware and emulators to support the

latest features. If you require any more specific details, then please do not hesitate to

contact us directly.

Implementation of the 128K BASIC Mode on DivIDE Plus

The ZX Spectrum 128K has two ROM banks: ROM0 and ROM1. ROM1 is the basic one,

used in BASIC48. ROM0 has menu, calculator, screen editor and extra functions specific

to the 128K Spectrum (AY commands etc). The Original DivIDE Hard Disk Interface will

cause a ZX Spectrum to crash whilst in 128K BASIC Mode (ROM0) - this appears to be

due to a clash between the DivIDE TR-DOS traps #3D00...#3DFF and the ZX Spectrum's

ROM0 code.

DivIDE Plus therefore addresses this problem by implementing its own latch (known as the

B4 Latch) on the 4th bit of Port &7FFD (decoded A15, A14, A2, /IORQ, /WR), keeping

the /M1 line coming from the Z80CPU high when ROM0 is selected (this disables the

autopaging of the DivIDE). This provides support for the ZX Spectrum's 128K BASIC

Mode, by ensuring that DivIDE Plus is not active when ROM0 is selected.

The B4 Latch is unaffected by the ZX Spectrum +3's OUT commands such as #0FFD,

#1FFD, #2FFD, #3FFD and is also not affected by an IN such as on the internal Port

&7FFD on the ZX Spectrum 128K.

However, the use of the B4 Latch to lock the /M1 line can lead to incompatibility with

some 128K snapshots and the DivIDE Plus therefore defaults to traps being enabled in

both ROM0 and ROM1 (as per the original DivIDE).

ROM1 is used by most software, as it contains the maths and tape routines, character set,

code to read the keyboard and many more standard system calls. On the other hand, the

contents of ROM0 differs a lot between the various 128K models (for example there are

differences between the Sinclair 128K and Amstrad +2 starting at address #0562).

Generally a 128K snapshot created with different ROM0 code will work on other

Spectrums, provided it does not call any routines contained within ROM0.

In order to enable this 128K Mode, the traps can be disabled in ROM0, by sending

OUT 23, BIN 001xxxxx

With 128K Mode enabled, there is a software solution to loading 128K snapshots which

access ROM0 on DivIDE Plus. In order to implement this, a fix is required to the

firmware:

Programming for DivIDE Plus

Page 138 of 140

1. On the stack place BC then a pointer to the following commands OUT (C),B:POP

BC:RET also placed on the stack below (8 bytes total).

 ------------- ------------- ------------- ------------- ------------

| OUT (C),B | POP BC: RET | code | BC | jump |

 ------------- ------------- ------------- ------------- ------------

^code ^SP ^original SP

2. Now set BC to #4xFD (x is the proper RAM bank), SP to the address of the stacked

code address and jump to the DivIDE exit area. The RAM bank must be set before

this call, as we only change the ROM bank here.

This will first jump to OUT, change the ROM bank, restore BC and return to the

main program.

Implementation of greater ROM/RAM space on DiviDE Plus

DivIDE Plus provides a total of 512K ROM and 512K RAM on the DivIDE Plus in order

to enable much improved firmware to be written (this compares to the 8K ROM and 32K

RAM available on the original DivIDE Hard Disk Interface).

We decided on 512K as this would allow ramdisk storage and the following additional

firmware to be used (as well as the original divIDE firmware):

ResiDOS

CPM22QED MBD (CP/M compatible)

ZXVGS MBD

The DivIDE Plus interface is equipped with 512K SRAM (628512 SMD soldered) and

512K ROM (29F040 PLCC in a socket) with address and data lines corrected, so no

dedicated .RAW files are needed to program firmware on another system. The RAM is

battery backed.

The scheme chosen mixes MB-02 paging using the Port &17 with DivIDE paging using

the &E3 Port. It is compatible with the original 8K firmware without amendment. You

will however, need to obtain the ROM reprogramming software from ourselves, rather than

use that provided for the original DivIDE, due to different procedures for programming the

29F040 chip than on the 28C64 used by the original DivIDE.

The &E3 Port is untouched. The &17 Port is 8bit, outputs are called Q0..Q7, as follows:

- Q6 and Q7 select the mode (DivIDE, RAM, ROM, reset).

- Q5 must be set to write-enable in RAM and ROM modes.

- Q0..Q4 select the memory banks.

We have also added a jumper to possibly enable extra facilities based on Q4. The jumper

is set by default (open) allowing operation as above - however when closed (if Q4 is set,

bit 4 of Port &7FFD replaces Q4 which gives the possibility of using custom ROM banks

in the 128K Mode (pages 0..15 are used as ROM1, whilst pages 16..31 are used as ROM0

for ZX Spectrum 128K bank-switching).

Programming for DivIDE Plus

Page 139 of 140

How the DivIDE Modes Operate

At power up, Ports &E3, &17 and &7FFD (internal) are all zeroed. Bit 4 of Port &7FFD

(B4 Latch) is set whilst the ZX Spectrum has ROM0 selected - this is to force the DivIDE

ROM and traps to act on power-on, even when the ZX Spectrum wakes up with ROM0.

If you press the Spectrum's reset button, it is slightly different. Only Ports &17 and

&7FFD (internal) are zeroed. Bit 4 of &7FFD (B4 Latch) is unchanged.

When the DivIDE is reset using software (ie. Port &17 is sent Q7=1,Q6=1), Port &E3,

&17 and Internal &7FFD are all zeroed. Again bit 4 of Port &7FFD is cleared.

This means that at this stage, DivIDE Mode is selected and the code stored in offsets

#06000..#07FFF in the 29F040 ROM is used to boot the computer.

DivIDE Mode (Send %000aaaax to Port &17)

This is the standard DivIDE Compatibility mode with all divIDE traps enabled, provided

that the Spectrum is using ROM1 or bit 4 of Port &7FFD (B4 Latch) is set by power-on.

Bit Q5 (%x) and bit Q0 (%x) are both unused in this mode (should be set to 0).

Bits Q1..Q4 (%aaaa) select the ROM/RAM area for DivIDE operation - providing 16

separate areas of 32K ROM + 32K RAM.

Each area consists of a set of 4 x 8K ROM banks (ROMa0, ROMa1, ROMa2, and

ROMa3) and 4 x 8K RAM banks (RAMa0, RAMa1, RAMa2, and RAMa3). Although

you can access all 4 RAM banks, you can only address ROMa3. This enables you to install

standard DivIDE firmware in ROMa3.

In MAPRAM mode (selected by Port &E3 as on the original DivIDE), RAMa3 is used as a

replacement for ROMa3. You can still access the other 3 RAM banks (RAMa0, RAMa1

and RAMa2 as memory), however, RAMa3 is write protected. You cannot access the

ROMa3 bank until you either turn the ZX Spectrum off and back on, or issue a Reset

Command to Port &17 (pressing the Spectrum's reset button will have no effect as it does

not zero Port &E3).

DivIDE Plus 128K Mode (Send %001xxxxx to Port &17)

This enables the 128K BASIC Mode - see above. Only Bit Q5 is required to be set to 1 -

all other bits (Q0...Q4) are ignored.

RAM Mode (Send %01waaaaa to Port &17)

This enables you to replace the ZX Spectrum ROM with the selected RAM page. All of

the DivIDE traps are inactive, although you can continue to use IDE commands and Port

&E3 (changes to Port &E3 will only take effect when DivIDE mode is selected, by Port

&17 or reset button).

Bit Q5 (%w) can be set to provide a 64K RAM mode, allowing you to run software that

requires 64K RAM in the Z80CPU address space (e.g. CP/M). If it is zero, then the RAM

is write-protected.

Programming for DivIDE Plus

Page 140 of 140

Bits Q0..Q4 (%aaaaa) selects the RAM page to be used in place of the ZX Spectrum ROM

- providing 32 separate pages of 16K.

ROM Mode (Send %10waaaaa to Port &17)

This enables you to replace the ZX Spectrum ROM with the selected ROM page. All of

the DivIDE traps are inactive, although you can continue to use IDE commands and Port

&E3.

Bit Q5 (%w) can be set to allow you to re-program the 29F040 Flash EEPROM chip.

Please note that there is a special algorithm required to re-program this chip, therefore

special software will need to be developed.

Bits Q0..Q4 (%aaaaa) selects the ROM page to be used in place of the ZX Spectrum ROM

- providing 32 separate pages of 16K.

Reset Mode (Send %11xxxxxx to Port &17)

This resets divIDE Plus (during the next ROM access or the refresh cycle if I register is

range 0..63). All other bits are ignored.

Port &17, Port &E3 and internal Port &7FFD are all zeroed. However bit 4 of Port &7FFD

(B4 Latch) remains unchanged.

This will then force the ZX Spectrum to restart - if ROM1 was selected at the time, then

the DivIDE Plus will restart in DivIDE Mode (as if you had just turned on the Spectrum).

However, if ROM0 was selected at the time, you will just be presented with the Spectrum

128 selection menu (Tape Loader, 128 BASIC, Calculator, 48 BASIC) as DivIDE Plus will

be disabled.

The Spectrum's 128K banking latch lock (bit 5 of &7FFD Port) can be cleared in software

by the reset instruction on Port &17, allowing you to test for ZX Spectrum +3 features

(namely the floppy disk) to see if they exist. However be warned that on a standard ZX

Spectrum 128K these OUT commands can crash the computer, as they go to Port &7FFD

